Please wait a minute...
浙江大学学报(工学版)
能源与机械工程     
带正电颗粒电凝并的显微可视化研究
沙东辉,骆仲泱,鲁梦诗,江建平,方梦祥,周栋,陈浩
浙江大学 能源工程学院,浙江 杭州 310027
Electrostatic agglomeration of positively charged particles observed by microscopic visualization system
SHA Dong hui, LUO Zhong yang, LU Meng shi, JIANG Jian ping, FANG Meng xiang, ZHOU Dong, CHEN Hao
College of Energy Engineering, Zhejiang University, Hangzhou 310027, China
 全文: PDF(3154 KB)   HTML
摘要:

利用高速摄像结合显微可视化技术,在一个截面积为10 mm×25 mm的矩形流道中,对以焚香颗粒为代表的细颗粒物相对于玻璃大颗粒的运动特性进行实验研究.通过实验发现,在正直流电场中,玻璃大颗粒和细颗粒物都被荷上了正电荷;当玻璃大颗粒和细颗粒物均不荷电时,细颗粒物相对于玻璃大颗粒主要发生圆球绕流行为;当玻璃大颗粒被荷上正电后,未荷电或荷电量较少的细颗粒物在运动到离玻璃大颗粒较近处,细颗粒物被玻璃大颗粒吸引并发生凝并,荷电量较多的细颗粒物被排斥;通过测量细颗粒物的速度可以发现:细颗粒物在接近玻璃大颗粒的过程中速度先减小,被吸引后速度快速增加.

Abstract:

A technique composed of high speed digital video and microscopic visualization was applied to experimentally analyze motion characteristic between fine incense particles and large glass particle in a rectangular flow channel. The channel’s cross sectional area was 10 mm×25 mm. Results show that fine particles and the large glass particle are all positively charged in a positive DC electric field. Fine particles flow over the large glass particle when both of them are uncharged. After the large glass particle is positively charged, fine particles will be attracted and agglomerated by the large glass particle when less charged or uncharged fine particles move enough close to the large glass particle. If the charge of fine particles is more, fine particles will be rejected. The velocities of fine particles were measured. The velocities of fine particles decrease when they are closing to the large glass particle, and rapidly increase after they begin to be attracted.

出版日期: 2016-03-31
:  TB 89  
基金资助:

国家“973”重点基础研究发展规划资助项目(2013CB228500).

通讯作者: 骆仲泱,男,教授.ORCID:0000 0001 8764 2986.E-mail:     E-mail: zyluo@zju.edu.cn
作者简介: 沙东辉(1990-),男,硕士生,从事PM2.5控制的研究.ORCID:0000 0003 0175 603X.E-mail:shadonghui@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

沙东辉,骆仲泱,鲁梦诗,江建平,方梦祥,周栋,陈浩. 带正电颗粒电凝并的显微可视化研究[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008-973X.2016.01.014.

SHA Dong hui, LUO Zhong yang, LU Meng shi, JIANG Jian ping, FANG Meng xiang, ZHOU Dong, CHEN Hao. Electrostatic agglomeration of positively charged particles observed by microscopic visualization system. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008-973X.2016.01.014.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2016.01.014        http://www.zjujournals.com/eng/CN/Y2016/V50/I1/93

[1] 杨复沫,马永亮,贺克斌. 细微大气颗粒物PM25及其研究概况[J]. 世界环境,2000(4): 32-34.
YANG Fu mo, MA Yong liang, HE Ke bin. A brief introduction to PM25 and related research [J]. World Environment, 2000 (4): 32-34.
[2] FERNANDEZ A, DAVIS S B, WENDT J O L, et al. Public health: particulate emission from biomass combustion [J]. Nature, 2001, 409(6823): 998.
[3] HOUGHTON J T, DING Y, GRIGGS D J, et al. Climate change 2001:the scientific basis [M]. Cambridge: Cambridge University Press, 2001: 289-348.
[4] 徐荣佳. 空气颗粒物污染对健康的危害和预防[J]. 解放军预防医学杂志, 2005,23(4):305-307.
XU Rong jia. Particulate matter pollution on health hazard  sand prevention [J].Journal of Preventive Medicine of Chinese PLA, 2005, 23(4): 305-307.
[5] 张秀清. 空气中颗粒物的危害及其防治[J].山西气象, 2007(3):27-28.
ZHANG Xiu qing. Hazard and prevention of airborne particu  late matters [J]. Shanxi Meteorological Quarterly, 2007 (3): 27-28.
[6] YAO Q, LI S Q, XU H W, et al. Studies on formation and control of combustion particulate matter in China: a review [J]. Energy, 2009, 34(9): 1296-1309.
[7] 赵爽, 骆仲泱, 王鹏, 等. 燃煤锅炉烟气中小颗粒的电凝并脱除[J]. 能源工程,2006(3):34-36.
ZHAO Shuang, LUO Zhong yang, WANG Peng, et al. Removal of fine particles of flue gas by electric agglomeration [J]. Energy Engineering, 2006(3): 34-36.
[8] 徐飞. 脉冲放电电凝并结合碱液吸收烟气多种污染物协同脱除研究[D]. 杭州:浙江大学, 2009.
XU Fei. Research on flue gas multi pollutants control enhanced by pulsed corona discharge electrostatic agglomeration combined with lye absorption [D]. Hangzhou: Zhejiang University, 2009.
[9] JI Jun ho, HWANG Jung ho, BAE Gwi nam. Particle charging and agglomeration in DC and AC electric fields [J]. Journal of Electrostatics, 2004, 61(1): 5768.
[10] GALLEGO J A, RIERA E, RODRIGUEZ G, et al. Application of acoustic agglomeration to reduce fine particle emissions from coal combustion plants [J]. Environmental Science and Technology, 1999, 33(21): 3843-3849.
[11] RIERA E, GALLEGO J A. RODRIGUEZ G, et al. Acoustic agglomeration of submicron particles in diesel exhausts: first results of the influence of humidity at two acoustic frequencies [J]. Journal of aerosol Science, 2000(31): 5827-5828.
[12] CAPERAN P H, SOMERS J, RICHTER K, et al. Acoustic agglomeration of a glycol fog aerosol: influence of particle concentration and intensity of the sound field at two frequencies [J]. Journal of Aerosol Seience, 1995, 26(4): 595-612.
[13] 赵汶, 刘勇, 鲍静静, 等. 化学团聚促进燃煤细颗粒物脱除的实验研究[J]. 中国电机工程学报, 2013, 33(20): 52-58.
ZHAO Wen, LIU Yong, BAO Jing jing, et al. Experimental research on fine particles removal from flue gas by chemical agglomeration [J]. Proceedings of the CSEE, 2013, 33(20): 52-58.
[14] YAN Jin pei, YANG Lin jun, ZHANG Xia. Experimental study on removal of ultrafine particles from coal combustion using condensation wet scrubber [J] . Proceedings of the CSEE, 2008, 28( 23 ): 8-13.
[15 ] 杨林军,颜金培,沈湘林.蒸汽相变促进燃烧源 PM25 凝并长大的研究现状及展望[J].现代化工,2005, 25(11):22-26.
YANG Lin jun, YAN Jin pei, SHEN Xiang lin. Prospect and advances in growth of PM25 from combustion by vapor condensation [J]. Modern Chemical Industry, 2005, 25(11): 22-26.
[16] 赵海亮, 由长福, 黄斌, 等. 亚微米燃烧源颗粒物间的相互作用研究[J]. 工程热物理学报, 2007,27(6): 1063-1065.
ZHAO Hai liang, YOU Chang fu, HUANG Bin, et al. The interactions between submicron combustion particles [J]. Journal of Engineering Thermophysics, 2007, 27(6): 1063-1065.
[17] 赵海亮, 由长福, 祁海鹰, 等. 细颗粒间相互作用力的研究[J]. 工程热物理学报, 2008(01): 78-80.
ZHAO Hai liang, YOU Chang fu, QI Hai ying, et al. Mechanism of interactions between fine particles [J]. Journal of Engineering Thermophysics, 2008(01): 78-80.
[18] 赵海亮, 由长福, 祁海鹰, 等. 两相流显微PIV/PTV系统的开发[J]. 实验力学, 2006, 20(4): 595-600.
ZHAO Hai liang, YOU Chang fu, QI Hai ying, et al. Development of the microscopic PIV/PTV system [J].Journal of Experimental Mechanics, 2006, 20(4): 595-600.
[19] 姚刚. 燃煤可吸入颗粒物声波团聚[D]. 南京:东南大学, 2006.
YAO Gang. Acoustic agglomeration of coal combustion inhalable particles [D]. Nanjing: Southeast University, 2006.
[20] XU Ji yun, ZHANG Jian, WANG Hao. Fine particle behavior in the air flow past a triangular cylinder [J]. Aerosol Science and Technology, 2013, 47(8): 875-884.
[21] HE Zhen jiang. Researching on sensitivity threshold and parameters optimization of measurement [C]∥Proceedings of 1st International Symposium of Test and Measurement. Taiyuan: [s. n.], 1995: 10-14.
[22] 郭永彩, 高潮. 超细颗粒测试技术[J]. 重庆职业技术学院学报, 2004, 13(1): 1-4.
GUO Yong cai, GAO Chao. Submicron particles size measurement techniques [J]. Journal of Chongqing Vocational and Technical Institute, 2004, 13(1): 1-4.
[23] 彭增伟. 高压静电除尘器电晕放电特性研究[D]. 保定:河北大学, 2005.
PENG Zeng wei. Study on corona discharge character of high voltage electrostatic precipitator [D]. Baoding: Hebei University, 2005.
[24] 解广润.高压静电除尘[M].北京: 水利电力出版社, 1993.
[25] 向晓东,邹霖,黄莺,等. 线 板式电除尘器场强正态分布模式假设及其检验[J]. 武汉科技大学学报:自然科学版, 2006, 29(4): 356-358.
XIANG Xiao dong, ZHOU Lin, HUANG Ying, et al. Assumption and verification of normal distribution model of electric field in wire plate ESP [J]. Journal of Wuhan University of Science and Technology, 2006, 29(4):356-358.
[26] WHITE H J. Industrial electrostatic precipitation [M]. Massachusetts: Wesley, 1963: 319-323.
[27] 向晓东. 现代除尘理论与技术[M]. 北京:冶金工业出版社, 2002: 187-190.
[28] 檀景辉. 基于脉冲正电晕放电离子源的离子迁移谱仪研究[D]. 天津:天津大学, 2010.
TAN Jing hui. Research of ion mobility spectrometer based on positive pulse corona discharge ion source [D]. Tianjin: Tianjin University, 2010.
[29] 郭硕鸿.电动力学[M]. 3版. 北京: 高等教育出版社, 2008: 53-54.
[30] 冯国敬. 介电泳驱动球形粒子的运动速度及其影响因素研究[D].哈尔滨:哈尔滨工业大学,2012.

No related articles found!