计算机技术、信息工程 |
|
|
|
|
基于自监督任务的多源无监督域适应法 |
吴兰1( ),王涵1,李斌全1,李崇阳1,孔凡士2 |
1. 河南工业大学 电气工程学院,河南 郑州 450001 2. 郑州铁路职业技术学院,河南 郑州 450001 |
|
Multi-source unsupervised domain adaption method based on self-supervised task |
Lan WU1( ),Han WANG1,Bin-quan LI1,Chong-yang LI1,Fan-shi KONG2 |
1. School of Electrical Engineering, Henan University of Technology, Zhengzhou 450001, China 2. Zhengzhou Railway Vocational and Technical College, Zhengzhou 450001, China |
引用本文:
吴兰,王涵,李斌全,李崇阳,孔凡士. 基于自监督任务的多源无监督域适应法[J]. 浙江大学学报(工学版), 2022, 56(4): 754-763.
Lan WU,Han WANG,Bin-quan LI,Chong-yang LI,Fan-shi KONG. Multi-source unsupervised domain adaption method based on self-supervised task. Journal of ZheJiang University (Engineering Science), 2022, 56(4): 754-763.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2022.04.015
或
https://www.zjujournals.com/eng/CN/Y2022/V56/I4/754
|
1 |
沈宗礼, 余建波 基于迁移学习与深度森林的晶圆图缺陷识别[J]. 浙江大学学报: 工学版, 2020, 54 (6): 1228- 1239 SHEN Zong-li, YU Jian-bo Wafer map defect recognition based on transfer learning and deep forest[J]. Journal of Zhejiang University: Engineering Science, 2020, 54 (6): 1228- 1239
|
2 |
LONG M, CAO Y, WANG J, et al. Learning transferable features with deep adaptation networks [C]// International Conference on Machine Learning. Lille: [s. n.], 2015: 97-105.
|
3 |
TZENG E, HOFFMAN J, SAENKO K, et al. Adversarial discriminative domain adaptation[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 7167–7176.
|
4 |
GANIN Y, LEMPITSKY V. Unsupervised domain adaptation by backpropagation [C]// International Conference on Machine Learning. Lille: PMLR, 2015: 1180–1189.
|
5 |
LONG M, ZHU H, WANG J, et al. Deep transfer learning with joint adaptation networks[C]// International Conference on Machine Learning. Sydney: PMLR, 2017: 2208–2217.
|
6 |
SAITO K, WATANABE K, USHIKU Y, et al. Maximum classifier discrepancy for unsupervi-sed domain adaptation [C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 3723–3732.
|
7 |
XU R, CHEN Z, ZUO W, et al. Deep cockt-ail network: multi-source unsupervised domain adaptation with category shift [C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 3964–3973.
|
8 |
ZHAO H, ZHANG S, WU G. Adversarial multiple source domain adaptation [C]// Proceedings of the 32nd International Conference on Neural Information Processing Systems. Montreal: MIT Press, 2018: 8568–8579.
|
9 |
李威, 王蒙. 基于渐进多源域迁移的无监督跨域目标检测[EB/OL]. (2020-03-20). http://kns.cnki.net/kcms/detail/11.2109.TP.20200320.1044.003.html. LI Wei, WANG Meng. Unsupervised cross-domain object detection based on progressive multi-source transfer [EB/OL]. (2020-03-20). http://kns.cnki.net/kcms/detail/11.2109.TP.20200320.1044.003.html.
|
10 |
PENG X, BAI Q, XIA X, et al. Moment matching for multi-source domain adaptation [C]// Proceedings of the IEEE/CVF International Conference on Computer Vision. Seoul: IEEE, 2019: 1406–1415.
|
11 |
ZHAO S, WANG G, ZHANG S, et al. Multi-source distilling domain adaptation [C]// Proceedings of the AAAI Conference on Artificial Intelligence. New York: AAAI, 2020: 1297–1298.
|
12 |
ZHU Y, ZHUANG F, WANG D. Aligning domain specific distribution and classifier for cross-domain classification from multiple sources [C]// Proceedings of the AAAI Conference on Artificial Intelligence. Hawaii: AAAI, 2019: 5989–5996.
|
13 |
PENG X, HUANG Z, ZHU Y, et al. Federatedadversarial domain adaptation [C]// International Conference on Learning Representations. Addis Ababa: [s. n.], 2020.
|
14 |
ZHANG R, ISOLA P, ALEXEI A. Colorful image colorization [C]// European Conference on Computer Vision. Cham: Springer, 2016: 649–666.
|
15 |
GUSTAV L A, MICHAEL M, GREG O, et al. Learning representations for automatic colorization [C]// European Conference on Computer Vision. Amsterdam: [s. n.], 2016: 577–593.
|
16 |
CARL V, ABHINAV S, ALIREZA F, et al. Tracking emerges by colorizing videos [C]// Proceedings of the European Conference on Computer Vision. Munich: [s. n.], 2018: 391–408.
|
17 |
NOROOZI M, FAVARO P. Unsupervised learning of visual representations by solving jigsaw puzzles [C]// European Conference on Computer Vision. Amsterdam: [s. n.], 2016: 69–84.
|
18 |
CARL D, ABHINAV G, ALEXEI A. Unsupervised visual representation learning by conte-xt prediction [C]// Proceedings of the IEEE International Conference on Computer Vision. [S. l.]: IEEE, 2015: 1422–1430.
|
19 |
IMON J, PAOLO F. Self-supervised feature learning by learning to spot artifacts [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 2733–2742.
|
20 |
SPYROS G, PRAVEER S, NIKOS K. Unsupervised representation learning by predicting image rotations [EB/OL].(2018-03-21). https://doi.org/10.48550/arXiv.1803.07728.
|
21 |
DEEPAK P, PHILIPP K, JEFF D, et al. Context encoders: feature learning by inpainting [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 2536–2544.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|