计算机与控制工程 |
|
|
|
|
基于知识增强的图卷积神经网络的文本分类 |
王婷( ),朱小飞*( ),唐顾 |
重庆理工大学 计算机科学与工程学院,重庆 400054 |
|
Knowledge-enhanced graph convolutional neural networks for text classification |
Ting WANG( ),Xiao-fei ZHU*( ),Gu TANG |
College of Computer Science and Engineering, Chongqing University of Technology, Chongqing 400054, China |
1 |
YAO L, MAO C, LUO Y. Graph convolutional networks for text classification[C]// Proceedings of the AAAI Conference on Artificial Intelligence. Honolulu: AAAI, 2019, 33(1): 7370-7377.
|
2 |
ZHANG Y, JIN R, ZHOU Z H Understanding bag-of-words model: a statistical framework[J]. International Journal of Machine Learning and Cybernetics, 2010, 1: 43- 52
doi: 10.1007/s13042-010-0001-0
|
3 |
WANG S I, MANNING C D. Baselines and bigrams: simple, good sentiment and topic classification[C]// Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics. Jeju Island: ACL, 2012: 90-94.
|
4 |
KIM Y. Convolutional neural networks for sentence classification[C]// Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing. Doha: EMNLP, 2014: 1746–1751.
|
5 |
LIU P, QIU X, HUANG X. Recurrent neural network for text classification with multi-task learning[C]// Proceedings of the 25th International Joint Conference on Artificial Intelligence. NewYork: IJCAI, 2016: 2873–2879.
|
6 |
COVER T, HART P Nearest neighbor pattern classification[J]. IEEE Transactions on Information Theory, 1967, 13 (1): 21- 27
doi: 10.1109/TIT.1967.1053964
|
7 |
UTGOFF P E. ID5: an incremental ID3 [M]// Machine Learning Proceedings 1988. Ann Arbor: Morgan Kaufmann, 1988: 107 − 120.
|
8 |
LOH W Y Classification and regression trees[J]. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 2011, 1 (1): 14- 23
doi: 10.1002/widm.8
|
9 |
QUINLAN J R. C4.5: programs for machine learning[M]. Massachusetts: Morgan Kaufmann Publishers, 1993.
|
10 |
VATEEKUL P, KUBAT M. Fast induction of multiple decision trees in text categorization from large scale, imbalanced, and multi-label data[C]// 2009 IEEE International Conference on Data Mining Workshops. Miami, FL: IEEE, 2009: 320-325.
|
11 |
LIU P, QIU X, HUANG X. Recurrent neural network for text classification with multi-task learning[C]// Proceedings of the 25th International Joint Conference on Artificial Intelligence. NewYork: IJCAI, 2016: 2873-2879.
|
12 |
HOCHREITER S, SCHMIDHUBER J Long short-term memory[J]. Neural Computation, 1997, 9 (8): 1735- 1780
doi: 10.1162/neco.1997.9.8.1735
|
13 |
JOHNSON R, ZHANG T Semi-supervised convolutional neural networks for text categorization via region embedding[J]. Advances in Neural Information Processing Systems, 2015, 28: 919- 927
|
14 |
ZHAO Z, WU Y. Attention-based convolutional neural networks for sentence classification[C]// Proceeding of the 17th Annual Conference of the International Speech Communication Association. San Francisco: INTER SPEECH, 2016: 705-709.
|
15 |
XUE W, ZHOU W, LI T, et al. MTNA: a neural multi-task model for aspect category classification and aspect term extraction on restaurant reviews[C]// Proceedings of the 8th International Joint Conference on Natural Language Processing. Taipei: IJCNLP, 2017: 151-156.
|
16 |
ZHOU J, CUI G, HU S, et al Graph neural networks: a review of methods and applications[J]. AI Open, 2020, 1: 57- 81
doi: 10.1016/j.aiopen.2021.01.001
|
17 |
WU Z, PAN S, CHEN F, et al A comprehensive survey on graph neural networks[J]. IEEE Transactions on Neural Networks and Learning Systems, 2020, 32 (1): 4- 24
|
18 |
HAMILTON W L, YING R, LESKOVEC J. Inductive representation learning on large graphs[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Long Beach: NIPS, 2017: 1025-1035.
|
19 |
BI Z, ZHANG T, ZHOU P, et al Knowledge transfer for out-of-knowledge-base entities: improving graph-neural-network-based embedding using convolutional layers[J]. IEEE Access, 2020, 8: 159039- 159049
doi: 10.1109/ACCESS.2020.3019592
|
20 |
SCARSELLI F, GORI M, TSOI A C, et al The graph neural network model[J]. IEEE Transactions on Neural Networks, 2008, 20 (1): 61- 80
|
21 |
KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks. [EB/OL]. (2017-02-22). https://arxiv.org/abs/1609.02907.
|
22 |
BOJANOWSKI P, GRAVE E, JOULIN A, et al. Bag of tricks for efficient text classification[C]// Association for Computational Linguistics. Valencia : ACL, 2017: 427-431.
|
23 |
SHEN D, WANG G, WANG W, et al. Baseline needs more love: on simple word-embedding-based models and associated pooling mechanisms[EB/OL]. (2018-05-24). https://arxiv.org/abs/1805.09843.
|
24 |
RAGESH R, SELLAMANICKAM S, IYER A, et al. Hetegcn: heterogeneous graph convolutional networks for text classification[C]// Proceedings of the 14th ACM International Conference on Web Search and Data Mining. Queensland: WSDM, 2021: 860-868.
|
25 |
KINGMA D P, BA J. Adam: a method for stochastic optimization[EB/OL]. (2014-12-22). https://arxiv.org/abs/1412.6980v3.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|