计算机与控制工程 |
|
|
|
|
PORP:面向无人驾驶的路径规划并行优化策略 |
戴天伦1( ),李博涵1,*( ),臧亚磊1,戴华2,于自强3,陈钢1 |
1. 南京航空航天大学 计算机科学与技术学院,江苏 南京 211106 2. 南京邮电大学 计算机学院,江苏 南京 210023 3. 烟台大学 计算机与控制工程学院,山东 烟台 264005 |
|
PORP: parallel optimization strategy of route planning for self-driving vehicles |
Tian-lun DAI1( ),Bo-han LI1,*( ),Ya-lei ZANG1,Hua DAI2,Zi-qiang YU3,Gang CHEN1 |
1. College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China 2. School of Computer Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China 3. School of Computer and Control Engineering, Yantai University, Yantai 264005, China |
引用本文:
戴天伦,李博涵,臧亚磊,戴华,于自强,陈钢. PORP:面向无人驾驶的路径规划并行优化策略[J]. 浙江大学学报(工学版), 2022, 56(2): 329-337.
Tian-lun DAI,Bo-han LI,Ya-lei ZANG,Hua DAI,Zi-qiang YU,Gang CHEN. PORP: parallel optimization strategy of route planning for self-driving vehicles. Journal of ZheJiang University (Engineering Science), 2022, 56(2): 329-337.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2022.02.014
或
https://www.zjujournals.com/eng/CN/Y2022/V56/I2/329
|
1 |
GHAFOURI A, LASZKA A, DUBEY A, et al. Optimal detection of faulty traffic sensors used in route planning [C]// Proceedings of the 2nd International Workshop on Science of Smart City Operations and Platforms Engineering. New York: ACM, 2017: 1-6.
|
2 |
LIEBIG T, PIATKOWSKI N, BOCKERMANN C, et al Dynamic route planning with real-time traffic predictions[J]. Information Systems, 2017, 64: 258- 265
doi: 10.1016/j.is.2016.01.007
|
3 |
ÖZAL A, RANGANATHAN A, TATBUL N. Real-time route planning with stream processing systems: a case study for the city of lucerne [C]// Proceedings of the 2nd ACM SIGSPATIAL International Workshop on Geo Streaming. Chicago: ACM, 2011: 21-28.
|
4 |
SHAO S, GUAN W, RAN B, et al Electric vehicle routing problem with charging time and variable travel time[J]. Mathematical Problems in Engineering, 2017, 2: 1- 13
|
5 |
TAHA A E M. Facilitating safe vehicle routing in smart cities [C]// 2017 IEEE International Conference on Communications. Paris: IEEE, 2017: 1-5.
|
6 |
DANIEL T. Multi-modal route planning in road and transit networks [D]. Freiburg: University of Karlsruhe, 2018.
|
7 |
TONG Y X, ZENG Y X, ZHOU Z M, et al A unified approach to route planning for shared mobility[J]. Proceedings of the VLDB Endowment, 2018, 11 (11): 1633- 1646
doi: 10.14778/3236187.3236211
|
8 |
DEMIRYUREK U, BANAEI-KASHANI F, SHAHABI C, et al. Online computation of fastest path in time-dependent spatial networks [C]// International Symposium on Spatial and Temporal Databases. Berlin: Springer, 2011: 92-111.
|
9 |
WANG H N, LI G L, HU H Q, et al R3: a real-time route recommendation system[J]. Proceedings of the VLDB Endowment, 2014, 7 (13): 1549- 1552
doi: 10.14778/2733004.2733027
|
10 |
MALVIYA N, MADDEN S, BHATTACHARYA A. A continuous query system for dynamic route planning [C]// 2011 IEEE 27th International Conference on Data Engineering. Hannover: IEEE, 2011: 792-803.
|
11 |
XU J J, GUO L M, DING Z M, et al. Traffic aware route planning in dynamic road networks [C]// International Conference on Database Systems for Advanced Applications. Berlin: Springer, 2012: 576-591.
|
12 |
ZHANG D X, YANG D Y, WANG Y, et al Distributed shortest path query processing on dynamic road networks[J]. The VLDB Journal, 2017, 26 (3): 399- 419
doi: 10.1007/s00778-017-0457-6
|
13 |
WANG S Z, CAO J N, YU P. Deep learning for spatio-temporal data mining: a survey [EB/OL]. [2021-07-01]. https://ieeexplore.ieee.org/document/9204396.
|
14 |
WANG Y S, YUAN Y, MA Y L, et al Time-dependent graphs: definitions, applications, and algorithms[J]. Data Science and Engineering, 2019, 4: 352- 366
doi: 10.1007/s41019-019-00105-0
|
15 |
HART P E, NILSSON N J, RAPHAEL B A formal basis for the heuristic determination of minimum cost paths[J]. IEEE Transactions on Systems Science and Cybernetics, 1968, 4 (2): 100- 107
doi: 10.1109/TSSC.1968.300136
|
16 |
刘晓倩, 张辉, 王英健 基于改进RRT的路径规划算法[J]. 自动化技术与应用, 2019, 38 (5): 96- 100 LIU Xiao-qian, ZHANG Hui, WANG Ying-jian Improved path planning algorithm of RRT[J]. Techniques of Automation and Applications, 2019, 38 (5): 96- 100
doi: 10.3969/j.issn.1003-7241.2019.05.022
|
17 |
刘军, 冯硕, 任建华 移动机器人路径动态规划有向D*算法[J]. 浙江大学学报:工学版, 2020, 54 (2): 291- 300 LIU Jun, FENG Shuo, REN Jian-hua Directed D* algorithm for dynamic path planning of mobile robots[J]. Journal of ZheJiang University: Engineering Science, 2020, 54 (2): 291- 300
|
18 |
OUYANG D, YUAN L, QIN L, et al Efficient shortest path index maintenance on dynamic road networks with theoretical guarantees[J]. Proceedings of the VLDB Endowment, 2020, 13 (5): 602- 615
doi: 10.14778/3377369.3377371
|
19 |
WU S W, LI D M, ZHANG G L, et al. Density-based dynamic revision path planning in urban area via VANET [C]// International Conference on Machine Learning and Intelligent Communications. Shanghai: Springer, 2016: 129-138.
|
20 |
DAI T L, ZHENG W C, SUN J, et al Continuous route planning over a dynamic graph in real-time[J]. Procedia Computer Science, 2020, 174: 111- 114
doi: 10.1016/j.procs.2020.06.065
|
21 |
HOLZER M, SCHULZ F, WAGNER D Engineering multilevel overlay graphs for shortest-path queries[J]. Journal of Experimental Algorithmics, 2009, 13: 156- 170
|
22 |
WANG S Z, HAO M, CHEN H, et al. Multi-task adversarial spatial-temporal networks for crowd flow prediction [C]// Proceedings of the 29th ACM International Conference on Information and Knowledge Management. 2020: 1555-1564.
|
23 |
WANG S Z, CAO J N, CHEN H, et al SeqST-GAN: Seq2Seq generative adversarial nets for multi-step urban crowd flow prediction[J]. ACM Transactions on Spatial Algorithms and Systems, 2020, 6 (4): 1- 24
|
24 |
REZAEI M, NOORI H, RAZLIGHI M M, et al ReFOCUS+: multi-layers real-time intelligent route guidance system with congestion detection and avoidance[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 22 (1): 1- 14
|
25 |
XIE J Y, SONG Z Y, LI Y P, et al A survey on machine learning-based mobile big data analysis: challenges and applications[J]. Wireless Communications and Mobile Computing, 2018, 8738613
|
26 |
LI J L, LUO G Y, CHENG N, et al An end-to-end load balancer based on deep learning for vehicular network traffic control[J]. IEEE Internet of Things Journal, 2018, 6 (1): 953- 966
|
27 |
JEFFREY L A, VICTOR J B A cooperative multi-agenttransportation management and route guidance system[J]. Transportation Research Part C: Emerging Technologies, 2002, 10 (5/6): 433- 454
|
28 |
WANG M, SHAN H G, LU R X, et al Real-time path planning based on hybrid-vanet-enhanced transportation system[J]. IEEE Transactions on Vehicular Technology, 2015, 64 (5): 1664- 1678
doi: 10.1109/TVT.2014.2335201
|
29 |
李博涵, 张潮, 李东静, 等 支持室内障碍空间的DSP-Topk查询优化算法研究[J]. 计算机研究与发展, 2017, 54 (3): 557 LI Bo-han, ZHANG Chao, LI Dong-jing, et al A DSP-Topk query optimization algorithm supporting indoor obstacle space[J]. Journal of Computer Research and Development, 2017, 54 (3): 557
doi: 10.7544/issn1000-1239.2017.20150895
|
30 |
YU Z Q, YU X H, KOUDAS N, et al. Distributed processing of k shortest path queries over dynamic road networks [C]// Proceedings of the 2020 ACM SIGMOD International Conference on Management of Data. Portland: ACM, 2020: 665-679.
|
31 |
YUAN J, ZHENG Y, XIE X, et al. Driving with knowledge from the physical world [C]// Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Diego: ACM, 2011: 316-324.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|