Please wait a minute...
浙江大学学报(工学版)  2022, Vol. 56 Issue (1): 128-136    DOI: 10.3785/j.issn.1008-973X.2022.01.014
土木工程、水利工程     
基于新型三维辐射应力的近岸波流耦合模型
纪超1(),张庆河2,*(),马殿光1,吴岳峰2,姜奇3
1. 交通运输部天津水运工程科学研究所 工程泥沙交通运输行业重点实验室, 天津 300456
2. 天津大学 水利工程仿真与安全国家重点实验室, 天津 300350
3. 中交第一航务工程勘察设计院有限公司, 天津 300222
Nearshore coupled wave-current model based on new three-dimensional radiation stress formulation
Chao JI1(),Qing-he ZHANG2,*(),Dian-guang MA1,Yue-feng WU2,Qi JIANG3
1. Key Laboratory of Engineering Sediment, Tianjin Research Institute for Water Transport Engineering, Ministry of Transport, Tianjin 300456, China
2. State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University, Tianjin 300350, China
3. CCCC First Harbor Consultants Limited Company, Tianjin 300222, China
 全文: PDF(1991 KB)   HTML
摘要:

为了合理模拟近岸波流运动,基于考虑海底坡度影响的新型三维辐射应力公式,建立近岸三维波流耦合数学模型. 该模型引入2种波面水滚模式,考虑波浪附加水平紊动效应. 采用大量实测数据对所建模型进行验证. 结果表明,利用该模型可以较好地模拟近岸波浪传播以及增减水、沿岸流、底部离岸流、裂流等不同的近岸波生流现象. 该模型采用的波流耦合方式能够全面地反映近岸波流的相互作用,新型三维辐射应力公式较其他公式可以更准确地描述波生流的垂向结构. 对于不同的近岸流算例,获得更准确的模拟结果可能需要采用不同的水滚模式,说明更具普适性的水滚模型有待进一步的研究. 考虑波浪水平紊动会使模型计算出的流速平面分布更平滑,避免出现过于突兀的流场结果.

关键词: 三维辐射应力耦合模型波流相互作用波生流波面水滚波浪附加紊动    
Abstract:

A three-dimensional coupled wave-current model was established based on a new three-dimensional radiation stress formulation including the beach slope effects in order to reasonably simulate the nearshore waves and circulations. Two kinds of surface roller models were implemented, and the wave-induced horizontal turbulent mixing effects were included in the coupled model. A number of experimental cases were used to validate the established model. The validation results show that the model can accurately simulate the nearshore wave propagation and various wave-induced circulation phenomena, including the wave setup, longshore current, undertow and rip current. The present wave-current coupling system can comprehensively describe the nearshore wave-current interaction, and the new three-dimensional radiation stress formulation used in the model can provide better performances than the other formulations for vertical flow structure simulations. The different surface roller models were used to obtain more accurate simulation results for different nearshore circulation cases, indicating that a more generally appropriate surface roller model requires further investigation. The wave-induced horizontal turbulent mixing can make the flow field smoother and avoid a too sharp velocity distribution.

Key words: three-dimensional radiation stress    coupled model    wave-current interaction    wave-induced circulation    surface roller    wave-induced turbulent mixing
收稿日期: 2021-01-18 出版日期: 2022-01-05
CLC:  P 753  
基金资助: 国家自然科学基金资助项目(U1906231,51679161);中央级公益性科研院所基本科研业务费资助项目(TKS20200410)
通讯作者: 张庆河     E-mail: jichao@tiwte.ac.cn;qhzhang@tju.edu.cn
作者简介: 纪超(1991—),男,助理研究员,博士,从事海岸动力学的研究. orcid.org/0000-0002-1218-5650. E-mail: jichao@tiwte.ac.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
纪超
张庆河
马殿光
吴岳峰
姜奇

引用本文:

纪超,张庆河,马殿光,吴岳峰,姜奇. 基于新型三维辐射应力的近岸波流耦合模型[J]. 浙江大学学报(工学版), 2022, 56(1): 128-136.

Chao JI,Qing-he ZHANG,Dian-guang MA,Yue-feng WU,Qi JIANG. Nearshore coupled wave-current model based on new three-dimensional radiation stress formulation. Journal of ZheJiang University (Engineering Science), 2022, 56(1): 128-136.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2022.01.014        https://www.zjujournals.com/eng/CN/Y2022/V56/I1/128

图 1  耦合模型的变量交换
图 2  斜向波实验波高、增减水及沿岸流验证
图 3  正向波实验波高、增减水及底部离岸流验证
图 4  DUCK94实验的波高分布验证
图 5  DUCK94实验的近岸波生流垂向分布验证
图 6  裂流算例的波浪场与流场计算结果
图 7  裂流算例不同剖面处向离岸流无量纲流速验证
图 8  仅采用波浪模型与采用耦合模型计算出的裂流实验组次T的波浪场
图 9  仅采用波浪模型与采用耦合模型计算出的裂流实验组次T的y = 8.5 m剖面处波高分布与实测数据比较
图 10  采用不同辐射应力公式计算得到的底部离岸流与实测数据比较
图 11  裂流算例采用不同辐射应力公式计算得到的向离岸流无量纲流速与实测数据比较
图 12  采用不同水滚模式计算得到的增减水及沿岸流与实测数据比较
图 13  采用不同水滚模式计算得到的底部离岸流与实测数据比较
图 14  波浪附加水平紊动对沿岸流分布的影响
图 15  波浪附加水平紊动对裂流分布的影响
1 XIA M, MAO M, NIU Q Implementation and comparison of the recent three-dimensional radiation stress theory and vortex-force formalism in an unstructured-grid coastal circulation model[J]. Estuarine, Coastal and Shelf Science, 2020, 240: 106771
doi: 10.1016/j.ecss.2020.106771
2 MELLOR G On surf zone fluid dynamics[J]. Journal of Physical Oceanography, 2021, 51 (1): 37- 46
doi: 10.1175/JPO-D-19-0318.1
3 MELLOR G The three-dimensional current and surface wave equations[J]. Journal of Physical Oceanography, 2003, 33 (9): 1978- 1989
doi: 10.1175/1520-0485(2003)033<1978:TTCASW>2.0.CO;2
4 MELLOR G The depth-dependent current and wave interaction equations: a revision[J]. Journal of Physical Oceanography, 2008, 38 (11): 2587- 2596
doi: 10.1175/2008JPO3971.1
5 MELLOR G A combined derivation of the integrated and vertically resolved, coupled wave-current equations[J]. Journal of Physical Oceanography, 2015, 45 (6): 1453- 1463
doi: 10.1175/JPO-D-14-0112.1
6 ZHANG D. Numerical simulation of large-scale waves and currents [D]. Singapore: National University of Singapore, 2004.
7 WARNER J C, SHERWOOD C R, SIGNELL R P, et al Development of a three-dimensional, regional, coupled wave, current, and sediment-transport model[J]. Computers and Geosciences, 2008, 34 (10): 1284- 1306
doi: 10.1016/j.cageo.2008.02.012
8 张敬. 海岸、河口区三维近岸环流与物质输运数值研究[D]. 青岛: 中国海洋大学, 2010.
ZHANG Jing. Numerical study of nearshore circulation and substance transport in coastal and estuary areas [D]. Qingdao: Ocean University of China, 2010.
9 BOLAÑOS R, OSUNA P, WOLF J, et al Development of the POLCOMS-WAM current-wave model[J]. Ocean Modelling, 2011, 36 (1/2): 102- 115
10 王平. 非结构波流耦合模型及近岸物质输运应用研究[D]. 大连: 大连理工大学, 2014.
WANG Ping. An unstructured wave-current coupled model and its application in the nearshore mass transport [D]. Dalian: Dalian University of Technology, 2014.
11 MARSOOLI R, ORTON P M, MELLOR G, et al A coupled circulation-wave model for numerical simulation of storm tides and waves[J]. Journal of Atmospheric and Oceanic Technology, 2017, 34 (7): 1449- 1467
doi: 10.1175/JTECH-D-17-0005.1
12 ARDHUIN F, JENKINS A D, BELIBASSAKIS K A Comments on "The three-dimensional current and surface wave equations"[J]. Journal of Physical Oceanography, 2008, 38 (6): 1340- 1350
doi: 10.1175/2007JPO3670.1
13 ARDHUIN F, SUZUKI N, MCWILLIAMS J C, et al Comments on "A combined derivation of the integrated and vertically resolved, coupled wave-current equations"[J]. Journal of Physical Oceanography, 2017, 47 (9): 2377- 2385
doi: 10.1175/JPO-D-17-0065.1
14 BENNIS A C, ARDHUIN F, DUMAS F On the coupling of wave and three-dimensional circulation models: choice of theoretical framework, practical implementation and adiabatic tests[J]. Ocean Modelling, 2011, 40 (3/4): 260- 272
15 UCHIYAMA Y, MCWILLIAMS J C, SHCHEPETKIN A F Wave-current interaction in an oceanic circulation model with a vortex-force formalism: application to the surf zone[J]. Ocean Modelling, 2010, 34 (1/2): 16- 35
16 KUMAR N, VOULGARIS G, WARNER J C, et al Implementation of the vortex force formalism in the coupled ocean-atmosphere-wave-sediment transport (COAWST) modeling system for inner shelf and surf zone applications[J]. Ocean Modelling, 2012, 47: 65- 95
doi: 10.1016/j.ocemod.2012.01.003
17 ZHENG P, LI M, VAN DER A D A, et al A 3D unstructured grid nearshore hydrodynamic model based on the vortex force formalism[J]. Ocean Modelling, 2017, 116: 48- 69
doi: 10.1016/j.ocemod.2017.06.003
18 NGUYEN D T, JACOBSEN N G, ROELVINK D Development and validation of quasi-Eulerian mean three-dimensional equations of motion using the generalized Lagrangian mean method[J]. Journal of Marine Science and Engineering, 2021, 9 (1): 76
doi: 10.3390/jmse9010076
19 JI C, ZHANG Q, WU Y Derivation of three-dimensional radiation stress based on Lagrangian solutions of progressive waves[J]. Journal of Physical Oceanography, 2017, 47 (11): 2829- 2842
doi: 10.1175/JPO-D-16-0277.1
20 CHEN C, LIU H, BEARDSLEY R C An unstructured grid, finite-volume, three-dimensional, primitive equations ocean model: application to coastal ocean and estuaries[J]. Journal of Atmospheric and Oceanic Technology, 2003, 20 (1): 159- 186
doi: 10.1175/1520-0426(2003)020<0159:AUGFVT>2.0.CO;2
21 CHEN C, HUANG H, BEARDSLEY R C, et al A finite volume numerical approach for coastal ocean circulation studies: comparisons with finite difference models[J]. Journal of Geophysical Research: Oceans, 2007, 112: C03018
22 MELLOR G, YAMADA T Development of a turbulence closure model for geophysical fluid problems[J]. Reviews of Geophysics, 1982, 20 (4): 851- 875
doi: 10.1029/RG020i004p00851
23 解鸣晓, 张玮 近岸波生流运动三维数值模拟及验证[J]. 水科学进展, 2011, 22 (3): 391- 399
XIE Ming-xiao, ZHANG Wei 3D numerical modeling of nearshore wave-induced currents[J]. Advances in Water Science, 2011, 22 (3): 391- 399
24 SVENDSEN I A Wave heights and set-up in a surf zone[J]. Coastal Engineering, 1984, 8 (4): 303- 329
doi: 10.1016/0378-3839(84)90028-0
25 RENIERS A J H M, ROELVINK J A, THORNTON E B Morphodynamic modeling of an embayed beach under wave group forcing[J]. Journal of Geophysical Research: Oceans, 2004, 109: C01030
26 LARSON M, KRAUS N C Numerical model of longshore current for bar and trough beaches[J]. Journal of Waterway, Port, Coastal, and Ocean Engineering, 1991, 117 (4): 326- 347
doi: 10.1061/(ASCE)0733-950X(1991)117:4(326)
27 SMAGORINSKY J General circulation experiments with the primitive equations, I. the basic experiment[J]. Monthly Weather Review, 1963, 91 (3): 99- 164
doi: 10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
28 BOOIJ N, RIS R C, HOLTHUIJSEN L H A third-generation wave model for coastal regions, 1. model description and validation[J]. Journal of Geophysical Research: Oceans, 1999, 104 (C4): 7649- 7666
doi: 10.1029/98JC02622
29 DIETRICH J C, ZIJLEMA M, ALLIER P E, et al Limiters for spectral propagation velocities in SWAN[J]. Ocean Modelling, 2013, 70: 85- 102
doi: 10.1016/j.ocemod.2012.11.005
30 CHEN T, ZHANG Q, WU Y, et al Development of a wave-current model through coupling of FVCOM and SWAN[J]. Ocean Engineering, 2018, 164: 443- 454
doi: 10.1016/j.oceaneng.2018.06.062
31 KIRBY J T, CHEN T M Surface waves on vertically sheared flows: approximate dispersion relations[J]. Journal of Geophysical Research: Oceans, 1989, 94 (C1): 1013- 1027
doi: 10.1029/JC094iC01p01013
32 张振伟. 波生流垂向分布规律和模拟[D]. 大连: 大连理工大学, 2013.
ZHANG Zhen-wei. Feature of the vertical distribution of wave induced currents with experimental and numerical simulations [D]. Dalian: Dalian University of Technology, 2013.
33 TING F C K Laboratory study of wave and turbulence velocities in a broad-banded irregular wave surf zone[J]. Coastal Engineering, 2001, 43 (3/4): 183- 208
34 GARCEZ FARIA A F, THORNTON E B, STANTON T P, et al Vertical profiles of longshore currents and related bed shear stress and bottom roughness[J]. Journal of Geophysical Research: Oceans, 1998, 103 (C2): 3217- 3232
doi: 10.1029/97JC02265
35 GARCEZ FARIA A F, THORNTON E B, LIPPMANN T C, et al Undertow over a barred beach[J]. Journal of Geophysical Research: Oceans, 2000, 105 (C7): 16999- 17010
doi: 10.1029/2000JC900084
36 HAAS K A, SVENDSEN I A Laboratory measurements of the vertical structure of rip currents[J]. Journal of Geophysical Research: Oceans, 2002, 107 (C5): 3047
doi: 10.1029/2001JC000911
37 HALLER M C, DALRYMPLE R A, SVENDSEN I A Experimental study of nearshore dynamics on a barred beach with rip channels[J]. Journal of Geophysical Research: Oceans, 2002, 107 (C6): 3061
doi: 10.1029/2001JC000955
[1] 李根,韩同春,吴俊扬,张宇. 基于有限体积法的地表径流与土壤水流耦合分析[J]. 浙江大学学报(工学版), 2022, 56(5): 947-955.
[2] 胡鹏,韩健健,雷云龙. 基于局部分级时间步长方法的水沙耦合数学模拟[J]. 浙江大学学报(工学版), 2019, 53(4): 743-752.
[3] 胡倩筠, 常晓林, 冯楚桥, 周伟, 马刚. 基于性能演变理论的混凝土细观损伤特性研究[J]. 浙江大学学报(工学版), 2018, 52(8): 1596-1604.
[4] 胡晨, 孙志林, Dale A. Kiefer, 李明佳. 海洋初级生产力的一维物理生态耦合模型[J]. 浙江大学学报(工学版), 2018, 52(5): 1002-1013.
[5] 张晓雷, 夏军强, 邓珊珊, 王增辉. 断面间距对黄河下游高含沙洪水模拟结果影响[J]. 浙江大学学报(工学版), 2016, 50(4): 735-743.