Please wait a minute...
浙江大学学报(工学版)  2019, Vol. 53 Issue (4): 743-752    DOI: 10.3785/j.issn.1008-973X.2019.04.015
土木工程、海洋工程     
基于局部分级时间步长方法的水沙耦合数学模拟
胡鹏(),韩健健,雷云龙
浙江大学 海洋学院,浙江 舟山 316021
Coupled modeling of sediment-laden flows based on local-time-step approach
Peng HU(),Jian-jian HAN,Yun-long LEI
Ocean College, Zhejiang University, Zhoushan 316021, China
 全文: PDF(1555 KB)   HTML
摘要:

基于局部时间步长(LTS)技术(即在每个计算网格采用局部允许的最大时间步长),建立新的水沙数学模型,提高计算效率. 用非结构三角形网格离散计算区域,采用充分反映水-沙-床相互作用的平面二维完整控制方程组,利用有限体积法求解控制方程,用HLLC近似黎曼算子估算界面数值通量. 对动床溃坝算例的计算表明,当选取合适的局部时间步长级数时,计算效率明显提高(节省计算时间幅度达到68%),精度满足要求. 长江中游太平口水道的工程应用表明,该模型能够在保证精度的前提下,节省高达92%的计算时间.

关键词: 水沙耦合模型有限体积法计算效率局部时间步长    
Abstract:

A new coupled model for sediment-laden flows was established with high computational efficiency by using the local-time-step (LTS) technology (i.e., using locally allowable maximum time step for variable updating at each cell). The governing equations that fully consider the interactions among the water flow, sediment transport and bed topography, were discretized by the finite volume method on unstructured triangular meshes. The inter-cell numerical fluxes were estimated by the HLLC approximate Riemann solver. The numerical case studies of dam-break floods over mobile bed suggested a reduction of the computational cost by 68% when adopting an appropriate LTS level. Engineering application of the model to the Taipingkou waterway of the Changjiang River led to a 92% reduction in the computational cost without losing quantitative accuracy.

Key words: coupled model for sediment-laden flows    finite volume method    computational efficiency    local-time-step
收稿日期: 2018-01-29 出版日期: 2019-03-28
CLC:  TV 142  
作者简介: 胡鹏(1985—),男,副教授,从事水沙动力学和泥沙运动研究. orcid.org/0000-0001-9214-1318. E-mail: pengphu@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
胡鹏
韩健健
雷云龙

引用本文:

胡鹏,韩健健,雷云龙. 基于局部分级时间步长方法的水沙耦合数学模拟[J]. 浙江大学学报(工学版), 2019, 53(4): 743-752.

Peng HU,Jian-jian HAN,Yun-long LEI. Coupled modeling of sediment-laden flows based on local-time-step approach. Journal of ZheJiang University (Engineering Science), 2019, 53(4): 743-752.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2019.04.015        http://www.zjujournals.com/eng/CN/Y2019/V53/I4/743

图 1  局部时间步长技术实现流程示意图
图 2  清水定床溃坝算例沿程水深在64 s时的分布图
工况 L Tr L2h L2u
无摩阻工况 1(GTS) 1.0 0 0
2 0.59 9.5×10?4 0.14
3 0.39 10?2 1.40
4 0.31 4.8×10?2 1.91
5 0.26 1.1×10?1 2.21
6 0.26 9.3×10?2 2.78
有摩阻工况 1(GTS) 1.0 0 0
2 0.57 1.3×10?3 10?2
3 0.36 2.8×10?3 1.8×10?2
4 0.27 5.2×10?3 2.3×10?1
5 0.24 4.3×10?2 7.4×10?1
湿床面工况 1(GTS) 1.0 0 0
2 0.58 2.4×10?3 2.1×10?2
3 0.36 5.7×10?3 5.0×10?2
4 0.36 5.7×10?3 5.0×10?2
表 1  局部时间步长技术模拟定床溃坝水流的成本和精度
图 3  UCL动床溃坝洪水实验水槽的平面布置示意图
图 4  UCL算例6个测点的计算(采用不同L)和实测水位
图 5  UCL算例2个断面冲淤分布的计算(采用不同L)和实测值
L Tr L2z)/10?4 L2(Δzb)/10?5
1(GTS) 1.0 0 0
2 0.53 1.8 2.8
3 0.32 3.5 7.7
4 0.25 2.3 48
表 2  局部时间步长技术模拟动床溃坝水流的成本和精度
图 6  太平口水道地理位置及网格划分示意图
图 7  太平口水道边界条件
图 8  计算(用不同级数L)所得太平口水道水深分布
图 9  计算(用不同级数L)和实测太平口水道冲淤分布
L Tr L2h L2(Δzb L Tr L2h L2(Δzb
1(GTS) 1.00 0 0 4 0.21 0.18 0.20
2 0.39 0.17 0.19 5 0.12 0.22 0.18
3 0.31 0.17 0.20 6 0.08 0.22 0.19
表 3  局部时间步长技术模拟太平口水道冲淤的成本和精度
1 王嘉松, 倪汉根, 金生 二维溃坝问题的高分辨率数值模拟[J]. 上海交通大学学报, 1999, 33 (10): 1213- 1216
WANG Jia-song, NI Han-gen, JIN Sheng High-resolution numerical simulations for two-dimensional dam-break problems[J]. Journal of Shanghai Jiaotong University, 1999, 33 (10): 1213- 1216
doi: 10.3321/j.issn:1006-2467.1999.10.006
2 HOU J, LIANG Q, ZHANG H, et al An efficient unstructured MUSCL scheme for solving the 2D shallow water equations[J]. Environmental Modelling and Software, 2015, 66 (C): 131- 152
3 YUE Z, LIU H, LI Y, et al A well-balanced and fully coupled noncapacity model for dam-break flooding[J]. Mathematical Problems in Engineering, 2015, (3): 1- 13
4 许栋, 徐彬, DAVID P, et al 基于GPU并行计算的浅水波运动数值模拟[J]. 计算力学学报, 2016, 33 (01): 114- 121
XU Dong, XU Bin, DAVID P, et al Numerical simulation of shallow water motion based on parallel computation using GPU[J]. Chinese Journal of Computational Mechanics, 2016, 33 (01): 114- 121
5 贺治国, 吴钢锋, 王振宇, 等 台风暴雨影响区域的溃坝洪水演进数值计算[J]. 浙江大学学报: 工学版, 2010, 44 (08): 1589- 1596
HE Zhi-guo, WU Gang-feng, WANG Zhen-yu, et al Numerical simulation for dam-break flood in hurricane-prone regions[J]. Journal of Zhejiang University: Engineering Science, 2010, 44 (08): 1589- 1596
6 冉启华, 吴秀山, 贺治国, 等 冰湖溃决模式对下游洪水过程的影响[J]. 清华大学学报: 自然科学版, 2014, 54 (08): 1049- 1056
RAN Qi-hua, WU Xiu-shan, HE Zhi-guo, et al Impact of glacial lake breach mechanism on downstream flood progress[J]. Journal of Tsinghua University: Science and Technology, 2014, 54 (08): 1049- 1056
7 吴钢锋, 贺治国, 刘国华 基于守恒稳定格式的二维坡面降雨动力波洪水模型[J]. 浙江大学学报: 工学版, 2014, 48 (03): 514- 520
WU Gang-feng, HE Zhi-guo, LIU Guo-hua Well-balanced two-dimensional dynamic wave model for rainfall-included overland flood[J]. Journal of Zhejiang University: Engineering Science, 2014, 48 (03): 514- 520
8 房克照, 尹晶, 孙家文, 等 基于二维浅水方程的滑坡体兴波数值模型[J]. 水科学进展, 2017, 28 (01): 96- 105
FANG Ke-zhao, YIN Jing, SUN Jia-wen, et al A numerical model for landslide-generated waves based on two-dimensional shallow water equations[J]. Advances in Water Science, 2017, 28 (01): 96- 105
9 于普兵, 潘存鸿, 谢亚力 二维风暴潮实时预报模型及其在杭州湾的应用[J]. 水动力学研究与进展A辑, 2011, 26 (06): 747- 756
YU Pu-bing, PAN Cun-hong, XIE Ya-li 2-dimesional real time forecasting model for storm tides and its application in Hangzhou Bay[J]. Chinese Journal of Hydrodynamics, 2011, 26 (06): 747- 756
doi: 10.3969/j.issn1000-4874.2011.06.014
10 TORO E F. Shock-capturing methods for free-surface shallow flows [M]. Chichester: Wiley, 2001.
11 ZHOU J G, CAUSON D M, MINGHAM C G, et al The surface gradient method for the treatment of source terms in the shallow-water equations[J]. Journal of Computational Physics, 2001, 168 (1): 1- 25
doi: 10.1006/jcph.2000.6670
12 BEGNUDELLI L, SANDERS B F Unstructured grid finite volume algorithm for shallow-water flow and transport with wetting and drying[J]. Journal of Hydraulic Engineering, 2006, 132 (4): 371- 384
doi: 10.1061/(ASCE)0733-9429(2006)132:4(371)
13 LIANG Q, BORTHWICK A G L Adaptive quadtree simulation of shallow flows with wet dry fronts over complex topography[J]. Computers and Fluids, 2009, 38 (2): 221- 234
doi: 10.1016/j.compfluid.2008.02.008
14 CAO Z X, PENDER G, CARLING P Shallow water hydrodynamic models for hypercon-centrated sediment-laden floods over erodible bed[J]. Advances in Water Resources, 2006, 29 (4): 546- 557
doi: 10.1016/j.advwatres.2005.06.011
15 CAO Z X, PENDER G, WALLIS S, et al Computational dam-break hydraulics over erodible sediment bed[J]. Journal of Hydraulic Engineering, 2004, 130 (7): 689- 703
doi: 10.1061/(ASCE)0733-9429(2004)130:7(689)
16 CANESTRELLI A, SIVIGLIA A, DUMBSER M, et al Well-balanced high-order centred schemes for non-conservative hyperbolic systems. applications to shallow water equations with fixed and mobile bed[J]. Advances in Water Resources, 2009, 32 (6): 834- 844
doi: 10.1016/j.advwatres.2009.02.006
17 HENG B C P, SANDERS G C, SCOTT C F Modeling overland flow and soil erosion on nonuniform hillslopes: a finite volume scheme[J]. Water Resources Research, 2009, 45 (5): 641- 648
18 LI W, VRIEND H J, WANG Z, et al Morphological modeling using a fully coupled, total variation diminishing upwind-biased centered scheme[J]. Water Resources Research, 2013, 49 (6): 3547- 3565
doi: 10.1002/wrcr.20138
19 HU P, CAO Z X, PENDER G Fully coupled mathematical modeling of turbidity currents over erodible bed[J]. Advances in Water Resources, 2009, 32 (1): 1- 15
doi: 10.1016/j.advwatres.2008.07.018
20 HU P, CAO Z X, PENDER G Well-balanced two-dimensional coupled modeling of submarine turbidity currents[J]. Maritime Engineering, 2012, 165 (4): 169- 188
doi: 10.1680/maen.2010.12
21 HU P, CAO Z X, PENDER G, et al Numerical modelling of riverbed grain size stratigraphic evolution[J]. International Journal of Sediment Research, 2014, 29 (3): 329- 343
doi: 10.1016/S1001-6279(14)60048-2
22 SANDERS B F Integration of a shallow water model with a local time step[J]. Journal of Hydraulic Research, 2008, 46 (4): 466- 475
doi: 10.3826/jhr.2008.3243
23 KESSERWANI G, LIANG Q RKDG2 shallow-water solver on non-uniform grids with local time steps: application to 1D and 2D hydrodynamics[J]. Applied Mathematical Modelling, 2015, 39 (3/4): 1317- 1340
24 DAZZI S, MARANZONI A, MIGNOSA P Local time stepping applied to mixed flow modelling[J]. Journal of Hydraulic Research, 2016, 54 (2): 1- 13
25 OSHER S, SANDERS R Numerical approximations to nonlinear conservation laws with locally varying time and space grids[J]. Mathematics of Computation, 1983, 41 (164): 321- 336
doi: 10.1090/S0025-5718-1983-0717689-8
26 DAWSON C, KIRBY R High resolution schemes for conservation laws with locally varying time steps[J]. Society for Industrial and Applied Mathematics, 2001, 22 (6): 2256- 2281
27 CROSSLEY A J, WRIGHT N G, WHITLOW C D Local time stepping for modeling open channel flows[J]. Journal of Hydraulic of Engineering, 2003, 129 (6): 455- 462
doi: 10.1061/(ASCE)0733-9429(2003)129:6(455)
28 CROSSLEY A J, WRIGHT N G Time accurate local time stepping for the unsteady shallow water equations[J]. International Journal for Numerical Methods in Fluids, 2005, 48 (7): 775- 799
doi: 10.1002/(ISSN)1097-0363
29 王巍. 浅水方程有限体积法的并行计算研究 [D]. 上海: 上海交通大学, 2008.
WANG Wei. Development and applications of parallel algorithm with shallow wave equation [D]. Shanghai: Shanghai Jiao Tong University, 2008.
30 周洋, 张景新 浅水方程的并行化求解[J]. 力学季刊, 2013, 34 (4): 607- 613
ZHOU Yang, ZHANG Jing-xin Parallel simulation of shallow water flow[J]. Chinese Quarterly of Mechanics, 2013, 34 (4): 607- 613
doi: 10.3969/j.issn.0254-0053.2013.04.013
31 DAZZI S, VACONDIO R, PALU A D, et al A local time stepping algorithm for GPU-accelerated 2D shallow water models[J]. Advances in Water Resources, 2017, 111 (1): 274- 288
32 QIAN H, CAO Z, PENDER G, et al Well-balanced numerical modelling of non-uniform sediment transport in alluvial rivers[J]. International Journal of Sediment Reasearch, 2015, 30 (2): 117- 130
doi: 10.1016/j.ijsrc.2015.03.002
33 WU W. Computational river dynamics [M]. London: Taylor & Francis, 2007.
34 张瑞瑾. 河流泥沙动力学 [M]. 北京: 水利电力出版社, 1989.
35 SPINEWINE B, ZECH Y Small-scale laboratory dam-break waves on movable beds[J]. Journal of Hydraulic Research, 2007, 45 (Suppl.1): 73- 86
[1] 黄硕,王双强,王鹏,张桂勇. 光滑点插值法应用于流固耦合的比较研究[J]. 浙江大学学报(工学版), 2020, 54(8): 1645-1654.
[2] 李薇,邹吉玉,胡鹏. 基于孔隙率和局部时间步长的城市洪水模拟[J]. 浙江大学学报(工学版), 2020, 54(3): 614-622.
[3] 吴钢锋,贺治国,刘国华. 基于守恒稳定格式的二维坡面降雨动力波洪水模型[J]. J4, 2014, 48(3): 514-520.
[4] 陈一帆,程伟平,蒋建群,钱镜林. 含水工构筑物的山区河流二维流场数值模拟[J]. J4, 2013, 47(11): 1945-1950.
[5] 李志峰 吴大转 王乐勤. 基于动网格方法的圆柱启动瞬态流动数值模拟[J]. J4, 2008, 42(2): 264-268.