[1] OSCHLIES A, GARCON V. Eddy-induced enhancement of primary production in a model of the North Atlantic Ocean[J]. Nature, 1998, 394(6690):266-269.
[2] RILEY G A. Factors controlling phytoplankton populations on Georges Bank[J]. Journal of Marine Research, 1946, 6:54-73.
[3] DUGDALE R C, GOERING J J. Uptake of new and regenerated forms of nitrogen in primary productivity[J]. Limnology and Oceanography, 1967, 12(2):196-206.
[4] SLAGSTAD D, ELLINGSEN I H, WASSMANN P. Evaluating primary and secondary production in an Arctic Ocean void of summer sea ice:An experimental simulation approach[J]. Progress in Oceanography, 2011, 90(1):117-131.
[5] POPOVA E E, YOOL A, COWARD A C, et al. What controls primary production in the Arctic Ocean? Results from an intercomparison of five general circulation models with biogeochemistry[J]. Journal of Geophysical Research, 2012,117(1):1-16.
[6] 刘桂梅, 孙松, 王辉. 海洋生态系统动力学模型及其研究进展[J].地球科学进展, 2003, 18(3):427-432. LIU Gui-mei, SUN Song, WANG Hui. Review on the marine ecosystem dynamics model[J]. Advances in Earth Science, 2003, 18(3):427-432.
[7] 周伟华,袁翔城,霍文毅,等.长江口领域叶绿素a和初级生产力的分布[J]. 海洋学报, 2004, 26(3):143-150. ZHOU Wei-hua, YUAN Xiang-cheng, HUO Wen-yi, et al. Distribution of chlorophyll a and primary productivity in the adjacent sea area of Changjiang River Estuary[J]. Acta Oceanologica Sinica, 2004, 26(3):143-150.
[8] 于庆云.切萨比克湾(Chesapeake Bay)浮游植物动力学特征的数值模拟研究[D].青岛:中国海洋大学, 2012:69-73. YU Qing-yun. The study on characters and numerical simulation of phytoplankton dynamics in Chesapeake Bay[D]. Qingdao:Ocean University of China, 2012:69-73.
[9] 郭琳.加利福尼亚流系物理-生态过程的时空演变特征及其动力学机制研究[D].青岛:中国海洋大学,2015:63-70. GUO Lin. Analysis of the characteristics and the mechanisms of physical and biological processes in the California Current System[D]. Qingdao:Ocean University of China, 2015:63-70.
[10] WILLIAMS P J B, THOMAS D N, REYNOLDS C S. Phytoplankton productivity:carbon assimilation in marine and freshwater ecosystems[M]oxford:Blackwell Science 2002:78-108.
[11] SABA V S, FRIEDRICHS M A M, CARR M E, et al. Challenges of modeling depth-integrated marine primary productivity over multiple decades:A case study at BATS and HOT[J]. Global Biogeochemical Cycles, 2010,24(3):811-829.
[12] NICHOLSON D P, STANLEY R H R, BARKAN E, et al. Evaluating triple oxygen isotope estimates of gross primary production at the Hawaii ocean time-series and bermuda atlantic time-series study sites[J].Journal of Geophysical Research, 2012, 117(5):1-18.
[13] SCHMITTNER A, OSCHLIES A, MATTHEWS H D, et al. Future changes in climate, ocean circulation, ecosystems, and biogeochemical cycling simulated for a business-as-usual CO2 emission scenario until year 4000 AD[J]. Global Biogeochemical Cycles, 2008,22(1):1-21.
[14] MONTEIRO F M, FOLLOWS M J. On nitrogen fixation and preferential remineralization of phosphorus[J]. Geophysical Research Letters, 2012, 39(6):L06607.
[15] MOORE C M, MILLS M M, ARRIGO K R, et al. Processes and patterns of oceanic nutrient limitation[J]. Nature Geoscience, 2013, 6(9):701-710.
[16] DONEY S C, GLOVER D M, NAJJAR R G. A new coupled, one-dimensional biological-physical model for the upper ocean:applications to the JGOFS Bermuda Atlantic Time-Series Study (BATS) site[J]. Deep-Sea Research Π, 1996, 43(2):591-624.
[17] LI Q P, FRANKS P J S, LANDRY M R, et al. Modeling phytoplankton growth rates and chlorophyll to carbon ratios in California coastal and pelagic ecosystems[J]. Journal of Geophysical Research, 2010, 115(4):1-12.
[18] LAUFKTTER C, VOGT M, GRUBER N, et al. Drivers and uncertainties of future global marine primary production in marine ecosystem models[J]. Biogeosciences, 2015, 12(23):6955-6984.
[19] KIEFER D A, KREMER J N. Origins of vertical patterns of phytoplankton and nutrients in the temperate, open ocean:a stratigraphic hypothesis[J]. Deep-Sea Research, 1981, 28(10):1087-1105.
[20] LEE Z P, WEIDEMANN A, KINDLE J, et al. Euphotic zone depth:its derivation and implication to ocean-color remote sensing[J]. Journal of Geophysical Research, 2007, 112(3):9-19.
[21] GILL A E, TURNER J S. A comparison of seasonal thermocline models with observation[J]. Deep-Sea Research, 1976, 23(5):391-401.
[22] TURNER J S, KRAUS E B. A one-dimensional model of the seasonal thermocline. I. A laboratory experiment and its interpretation.[J]. Tellus, 2010,19(1):88-97.
[23] TAYLOR K E. Summarizing multiple aspects of model performance in a single diagram[J]. Journal of Geophysical Research, 2001, 106(7):7183-7192.
[24] WILLIAMS P J B, THOMAS D N, REYNOLDS C S. Phytoplankton productivity:carbon assimilation in marine and freshwater ecosystems[M]//Oxford:Blackwell Science, 2002:222-264.
[25] FENNEL K, SPITZ Y H, LETELIER R M, et al. A deterministic model for N2 fixation at stn. ALOHA in the subtropical North Pacific Ocean[J]. Deep-Sea Research Ⅱ, 2001, 49(1):149-174.
[26] DONEY S C, LIMA I, MOORE J K, et al. Skill metrics for confronting global upper ocean ecosystem-biogeochemistry models against field and remote sensing data[J]. Journal of Marine Systems, 2009, 76(1):95-112.
[27] CARR M E, FRIEDRICHS M A M, SCHMELTZ M, et al. A comparison of global estimates of marine primary production from ocean color[J]. Deep-Sea Research Ⅱ, 2006, 53(5):741-770. |