Please wait a minute...
浙江大学学报(工学版)  2018, Vol. 52 Issue (5): 1002-1013    DOI: 10.3785/j.issn.1008-973X.2018.05.022
海洋工程     
海洋初级生产力的一维物理生态耦合模型
胡晨1, 孙志林1, Dale A. Kiefer2, 李明佳1
1. 浙江大学 海洋学院, 浙江 杭州 310058;
2. University of Southern California Biological Sciences Department, Los Angeles, CA 90089, USA
One-dimensional physical-biological coupled model for marine primary production
HU Chen1, SUN Zhi-lin1, Dale A. Kiefer2, LI Ming-jia1
1. Ocean College, Zhejiang University, Hangzhou 310058, China;
2. Biological Sciences Department, University of Southern California, Los Angeles, CA 90089, USA
 全文: PDF(2445 KB)   HTML
摘要:

为了更有效研究海洋初级生产力量值,构建物理-生态耦合模型,探讨影响海洋初级生产力的动力及生态因素.通过增加对流和扩散模块、分离营养盐循环体系、改变浮游植物生长速率公式及加入叶绿素计算模块,分别优化Gill-Turner(简称GT)混合层模型与Schmittner(简称S)生态系统模型,进而建立新型物理-生态耦合模型.基于Mathematica二次开发平台对模型进行编程实现,用以模拟大西洋百慕大站和太平洋夏威夷站的海洋初级生产力,优化后耦合模型的模拟结果精度明显提高.模拟结果显示,两大海域初级生产力均具有冬季高夏季低的分布特征,混合层深度与浮游植物浓度是影响初级生产力分布的重要因素.

Abstract:

A physical-biological coupled model was constructed to analyze the main hydrodynamic and ecological factors affecting marine primary production in order to more effectively analyze marine primary productivity. The Gill-Turner (GT) mixed layer model and the Schmittner (S) ecosystem model were optimized by adding advection-diffusion module, separating the nitrogen and phosphate circulations, correcting phytoplankton growth functions and introducing chlorophyll calculation. A new coupled physical-biological model was constructed. Then the model was implemented based on Mathematica 10.0 platform, and applied in the Bermuda Atlantic Time-series Study site and Hawaii Ocean Time-series station to simulate the spatial and temporal distributions of primary production. All optimized steps were proved to improve the performance of this coupled model. The simulation results indicate that primary production distributions at both spots have the characteristics of higher values in winter and lower in summer. The mixed layer depth and phytoplankton concentration are the important factors affecting its distribution.

收稿日期: 2017-04-20 出版日期: 2018-11-07
CLC:  P76  
基金资助:

国家自然科学基金资助项目(91647209).

通讯作者: 孙志林,男,教授,博导.orcid.org/0000-0001-6646-3472.     E-mail: oceansun@zju.edu.cn
作者简介: 胡晨(1987-),女,博士生,从事港口海岸及近海工程等研究.orcid.org/0000-0003-3345-3850.E-mail:dhc8747@gmail.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  

引用本文:

胡晨, 孙志林, Dale A. Kiefer, 李明佳. 海洋初级生产力的一维物理生态耦合模型[J]. 浙江大学学报(工学版), 2018, 52(5): 1002-1013.

HU Chen, SUN Zhi-lin, Dale A. Kiefer, LI Ming-jia. One-dimensional physical-biological coupled model for marine primary production. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(5): 1002-1013.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2018.05.022        http://www.zjujournals.com/eng/CN/Y2018/V52/I5/1002

[1] OSCHLIES A, GARCON V. Eddy-induced enhancement of primary production in a model of the North Atlantic Ocean[J]. Nature, 1998, 394(6690):266-269.
[2] RILEY G A. Factors controlling phytoplankton populations on Georges Bank[J]. Journal of Marine Research, 1946, 6:54-73.
[3] DUGDALE R C, GOERING J J. Uptake of new and regenerated forms of nitrogen in primary productivity[J]. Limnology and Oceanography, 1967, 12(2):196-206.
[4] SLAGSTAD D, ELLINGSEN I H, WASSMANN P. Evaluating primary and secondary production in an Arctic Ocean void of summer sea ice:An experimental simulation approach[J]. Progress in Oceanography, 2011, 90(1):117-131.
[5] POPOVA E E, YOOL A, COWARD A C, et al. What controls primary production in the Arctic Ocean? Results from an intercomparison of five general circulation models with biogeochemistry[J]. Journal of Geophysical Research, 2012,117(1):1-16.
[6] 刘桂梅, 孙松, 王辉. 海洋生态系统动力学模型及其研究进展[J].地球科学进展, 2003, 18(3):427-432. LIU Gui-mei, SUN Song, WANG Hui. Review on the marine ecosystem dynamics model[J]. Advances in Earth Science, 2003, 18(3):427-432.
[7] 周伟华,袁翔城,霍文毅,等.长江口领域叶绿素a和初级生产力的分布[J]. 海洋学报, 2004, 26(3):143-150. ZHOU Wei-hua, YUAN Xiang-cheng, HUO Wen-yi, et al. Distribution of chlorophyll a and primary productivity in the adjacent sea area of Changjiang River Estuary[J]. Acta Oceanologica Sinica, 2004, 26(3):143-150.
[8] 于庆云.切萨比克湾(Chesapeake Bay)浮游植物动力学特征的数值模拟研究[D].青岛:中国海洋大学, 2012:69-73. YU Qing-yun. The study on characters and numerical simulation of phytoplankton dynamics in Chesapeake Bay[D]. Qingdao:Ocean University of China, 2012:69-73.
[9] 郭琳.加利福尼亚流系物理-生态过程的时空演变特征及其动力学机制研究[D].青岛:中国海洋大学,2015:63-70. GUO Lin. Analysis of the characteristics and the mechanisms of physical and biological processes in the California Current System[D]. Qingdao:Ocean University of China, 2015:63-70.
[10] WILLIAMS P J B, THOMAS D N, REYNOLDS C S. Phytoplankton productivity:carbon assimilation in marine and freshwater ecosystems[M]oxford:Blackwell Science 2002:78-108.
[11] SABA V S, FRIEDRICHS M A M, CARR M E, et al. Challenges of modeling depth-integrated marine primary productivity over multiple decades:A case study at BATS and HOT[J]. Global Biogeochemical Cycles, 2010,24(3):811-829.
[12] NICHOLSON D P, STANLEY R H R, BARKAN E, et al. Evaluating triple oxygen isotope estimates of gross primary production at the Hawaii ocean time-series and bermuda atlantic time-series study sites[J].Journal of Geophysical Research, 2012, 117(5):1-18.
[13] SCHMITTNER A, OSCHLIES A, MATTHEWS H D, et al. Future changes in climate, ocean circulation, ecosystems, and biogeochemical cycling simulated for a business-as-usual CO2 emission scenario until year 4000 AD[J]. Global Biogeochemical Cycles, 2008,22(1):1-21.
[14] MONTEIRO F M, FOLLOWS M J. On nitrogen fixation and preferential remineralization of phosphorus[J]. Geophysical Research Letters, 2012, 39(6):L06607.
[15] MOORE C M, MILLS M M, ARRIGO K R, et al. Processes and patterns of oceanic nutrient limitation[J]. Nature Geoscience, 2013, 6(9):701-710.
[16] DONEY S C, GLOVER D M, NAJJAR R G. A new coupled, one-dimensional biological-physical model for the upper ocean:applications to the JGOFS Bermuda Atlantic Time-Series Study (BATS) site[J]. Deep-Sea Research Π, 1996, 43(2):591-624.
[17] LI Q P, FRANKS P J S, LANDRY M R, et al. Modeling phytoplankton growth rates and chlorophyll to carbon ratios in California coastal and pelagic ecosystems[J]. Journal of Geophysical Research, 2010, 115(4):1-12.
[18] LAUFKTTER C, VOGT M, GRUBER N, et al. Drivers and uncertainties of future global marine primary production in marine ecosystem models[J]. Biogeosciences, 2015, 12(23):6955-6984.
[19] KIEFER D A, KREMER J N. Origins of vertical patterns of phytoplankton and nutrients in the temperate, open ocean:a stratigraphic hypothesis[J]. Deep-Sea Research, 1981, 28(10):1087-1105.
[20] LEE Z P, WEIDEMANN A, KINDLE J, et al. Euphotic zone depth:its derivation and implication to ocean-color remote sensing[J]. Journal of Geophysical Research, 2007, 112(3):9-19.
[21] GILL A E, TURNER J S. A comparison of seasonal thermocline models with observation[J]. Deep-Sea Research, 1976, 23(5):391-401.
[22] TURNER J S, KRAUS E B. A one-dimensional model of the seasonal thermocline. I. A laboratory experiment and its interpretation.[J]. Tellus, 2010,19(1):88-97.
[23] TAYLOR K E. Summarizing multiple aspects of model performance in a single diagram[J]. Journal of Geophysical Research, 2001, 106(7):7183-7192.
[24] WILLIAMS P J B, THOMAS D N, REYNOLDS C S. Phytoplankton productivity:carbon assimilation in marine and freshwater ecosystems[M]//Oxford:Blackwell Science, 2002:222-264.
[25] FENNEL K, SPITZ Y H, LETELIER R M, et al. A deterministic model for N2 fixation at stn. ALOHA in the subtropical North Pacific Ocean[J]. Deep-Sea Research Ⅱ, 2001, 49(1):149-174.
[26] DONEY S C, LIMA I, MOORE J K, et al. Skill metrics for confronting global upper ocean ecosystem-biogeochemistry models against field and remote sensing data[J]. Journal of Marine Systems, 2009, 76(1):95-112.
[27] CARR M E, FRIEDRICHS M A M, SCHMELTZ M, et al. A comparison of global estimates of marine primary production from ocean color[J]. Deep-Sea Research Ⅱ, 2006, 53(5):741-770.

No related articles found!