能源工程、机械工程 |
|
|
|
|
储罐地基材料在熔盐泄露后的导热系数研究 |
王曌文( ),周昊*( ),罗佳伟,伍其威,岑可法 |
浙江大学 能源清洁利用国家重点实验室, 浙江 杭州 310027 |
|
Research on thermal conductivity of storage tank foundation materials after molten salt leakage |
Zhao-wen WANG( ),Hao ZHOU*( ),Jia-wei LUO,Qi-wei WU,Ke-fa CEN |
State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China |
引用本文:
王曌文,周昊,罗佳伟,伍其威,岑可法. 储罐地基材料在熔盐泄露后的导热系数研究[J]. 浙江大学学报(工学版), 2022, 56(1): 137-143.
Zhao-wen WANG,Hao ZHOU,Jia-wei LUO,Qi-wei WU,Ke-fa CEN. Research on thermal conductivity of storage tank foundation materials after molten salt leakage. Journal of ZheJiang University (Engineering Science), 2022, 56(1): 137-143.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2022.01.015
或
https://www.zjujournals.com/eng/CN/Y2022/V56/I1/137
|
1 |
沈烨烨. 燃料电池DC-DC变换器建模与控制[D]. 杭州: 浙江大学, 2014. SHEN Ye-ye. Modeling and control of fuel cell DC-DC converter [D]. Hangzhou: Zhejiang University, 2014.
|
2 |
霍雅勤 化石能源的环境影响及其政策选择[J]. 中国能源, 2000, (5): 15- 19 HUO Ya-qin Environmental impact of fossil energy and policy options[J]. Energy of China, 2000, (5): 15- 19
|
3 |
中国石化 《BP世界能源统计年鉴》2020版发布[J]. 中国石化, 2020, (6): 6 Sinopec The BP Statistical Yearbook of World Energy 2020 was released[J]. Sinopec, 2020, (6): 6
|
4 |
钱璇, 姚永强, 李俊荣, 等 太阳选址全国日照条件分析[J]. 天文学报, 2012, 53 (2): 171- 180 QIAN Xuan, YAO Yong-qiang, LI Jun-rong, et al Analysis of sunshine conditions in the country[J]. Acta Astronomica Sinica, 2012, 53 (2): 171- 180
doi: 10.3969/j.issn.0001-5245.2012.02.009
|
5 |
RODRIGUEZ I, PEREZ-SEGARRA C D, LEHMKUHL O, et al Modular object-oriented methodology for the resolution of molten salt storage tanks for CSP plants[J]. Applied Energy, 2013, 109 (9): 402- 414
|
6 |
ZHOU H, SHI H, LAI Z Y, et al Migration and phase change study of leaking molten salt in tank foundation material[J]. Applied Thermal Engineering, 2020, 170 (4): 114968
|
7 |
TORRAS S, PÉREZ-SEGARRA C, RODRÍGUEZ I, et al Parametric study of two-tank TES systems for CSP plants[J]. Energy Procedia, 2015, 69 (5): 1049- 1058
|
8 |
SCHULTEFISCHEDICK J, TAMME R, HERRMANN U. CFD analysis of the cool down behaviour of molten salt thermal storage systems [C]// Proceedings of the ASME 2008 2nd International Conference on Energy Sustainability collocated with the Heat Transfer, Fluids Engineering, and 3rd Energy Nanotechnology Conferences. Florida: ASME, 2008.
|
9 |
ZHOU H, WANG Z, ZHOU M, et al Thermal properties, permeability and compressive strength of highly porous accumulated ceramsites in the foundation of salt tank for concentrate solar power plants[J]. Applied Thermal Engineering, 2019, 164 (9): 114451
|
10 |
ZHOU H, WANG Z, ZHOU M, et al Experimental measurements and XCT based simulation of effective thermal conductivity of stacked ceramsites in molten-salt tank foundation[J]. Heat and Mass Transfer, 2019, 55 (11): 3103- 3115
doi: 10.1007/s00231-019-02646-6
|
11 |
田松, 崔晓春 采用光纤测温的方法检测熔盐罐泄漏[J]. 太阳能, 2017, (7): 43- 45 TIAN Song, CUI Xiao-chun The leakage of molten salt tank was detected by optical fiber temperature measurement[J]. Solar Energy, 2017, (7): 43- 45
doi: 10.3969/j.issn.1003-0417.2017.07.007
|
12 |
郭晓娟, 丁旃, 秦贯丰, 等 高温熔融盐蓄热系统的若干工程问题[J]. 储能科学与技术, 2015, 4 (1): 32- 43 GUO Xiao-juan, DING Zhan, QIN Guan-feng, et al Some engineering problems of high temperature molten salt heat storage system[J]. Energy Storage Science and Technology, 2015, 4 (1): 32- 43
doi: 10.3969/j.issn.2095-4239.2015.01.003
|
13 |
GOMES A, NAVAS M, URANGA N, et al High-temperature corrosion performance of austenitic stainless steels type AISI 316L and AISI 321H, in molten solar salt[J]. Solar Energy, 2018, 177 (1): 408- 419
|
14 |
FLUECKIGER S, YANG Z, GARIMELL S V An integrated thermal and mechanical investigation of molten-salt thermocline energy storage[J]. Applied Energy, 2011, 88 (6): 2098- 2105
doi: 10.1016/j.apenergy.2010.12.031
|
15 |
周天, 袁杰, 马爱纯 基于相变线源解的固液热导率测量方法及其影响因素分析[J]. 中南大学学报:自然科学版, 2021, 52 (1): 276- 284 ZHOU Tian, YUAN Jie, MA Ai-chun Solid-liquid thermal conductivity measurement method based on phase-varying linear source solution and analysis of its influencing factors[J]. Journal of Central South University: Science and Technology, 2021, 52 (1): 276- 284
|
16 |
张绩松, 王晓娜, 侯德鑫, 等 基于激光热成像的局部导热系数测试[J]. 激光与红外, 2020, 50 (12): 1426- 1432 ZHANG Ji-song, WANG Xiao-na, HOU De-xin, et al Measurement of local thermal conductivity based on laser thermal imaging[J]. Laser and Infrared, 2020, 50 (12): 1426- 1432
doi: 10.3969/j.issn.1001-5078.2020.12.002
|
17 |
田英良, 刘亚茹, 李建峰, 等 超薄玻璃导热系数测量方法及影响因素[J]. 硅酸盐通报, 2020, 39 (7): 2291- 2296 TIAN Ying-liang, LIU Ya-ru, LI Jian-feng, et al Measurement method and influencing factors of thermal conductivity of ultra-thin glass[J]. Bulletin of the Chinese Ceramic Society, 2020, 39 (7): 2291- 2296
|
18 |
汤玉婷, 徐屾, 张恒运 点加热稳态导热系数测量方法研究[J]. 热能动力工程, 2020, 35 (4): 163- 168 TANG Yu-ting, XU Shen, ZHANG Heng-yun Study on measurement method of steady-state thermal conductivity of point heating[J]. Journal of Engineering for Thermal Energy and Power, 2020, 35 (4): 163- 168
|
19 |
QU M L, TIAN S Q, FAN L W, et al An experimental investigation and fractal modeling on the effective thermal conductivity of novel autoclaved aerated concrete (AAC)-based composites with silica aerogels (SA)[J]. Applied Thermal Engineering, 2020, 179 (10): 115770
|
20 |
KARAWACKI E, SULEIMAN B M, UL-HAQ I, et al An extension to the dynamic plane source technique for measuring thermal conductivity, thermal diffusivity, and specific heat of dielectric solids[J]. Review of Scientific Instruments, 1992, 63 (10): 4390- 4397
doi: 10.1063/1.1143739
|
21 |
SCHARLI U, RYBACH L On the thermal conductivity of low-porosity crystalline rocks[J]. Tectonophysics, 1984, 103 (1-4): 307- 313
doi: 10.1016/0040-1951(84)90092-1
|
22 |
MOLINA J M, PRIETO R, NARCISO J, et al The effect of porosity on the thermal conductivity of Al–12 wt. % Si/SiC composites[J]. Scripta Materialia, 2009, 60 (7): 582- 585
doi: 10.1016/j.scriptamat.2008.12.015
|
23 |
公维宽, 王伟强 CT三维重构煤体结构及瓦斯渗流数值模拟[J]. 煤矿安全, 2020, 51 (11): 19- 23 GONG Wei-kuan, WANG Wei-qiang 3D reconstruction of coal structure and gas seepage numerical simulation in CT[J]. Safety in Coal Mines, 2020, 51 (11): 19- 23
|
24 |
HAJIZADEH A, SAFEKORDI A, FARHADPOUR F A A multiple-point statistics algorithm for 3D pore space reconstruction from 2D images[J]. Advances in Water Resources, 2011, 34 (10): 1256- 1267
doi: 10.1016/j.advwatres.2011.06.003
|
25 |
周明熙, 周昊, 马鹏楠, 等 基于CT显微图像的烧结矿孔隙特征分析及有效热导率预测[J]. 化工学报, 2018, 69 (2): 633- 641 ZHOU Ming-xi, ZHOU Hao, MA Peng-nan, et al Analysis of pore characteristics and prediction of effective thermal conductivity of sinter based on CT microscopic images[J]. Journal of Chemical Industry and Engineering(China), 2018, 69 (2): 633- 641
|
26 |
RANUT P, NOBILE E, MANCINI L High resolution X-ray microtomography-based CFD simulation for the characterization of flow permeability and effective thermal conductivity of aluminum metal foams[J]. Experimental Thermal and Fluid Science, 2015, 67 (10): 30- 36
|
27 |
KARTHIK K B, JAYATHI Y M, SURESH V G Microtomography-based simulation of transport through open-cell metal foams[J]. Numerical Heat Transfer, 2010, 58 (7): 527- 544
doi: 10.1080/10407782.2010.511987
|
28 |
GUIGNOT N, KING A, BOULARD E Synchrotron X-ray computed microtomography for high pressure science[J]. Journal of Applied Physics, 2020, 127 (24): 240901
doi: 10.1063/5.0008731
|
29 |
MIHALCEA E, VERGARA-HERNÁNDEZ H J, OLMOS L, et al. X-ray computed microtomography characterization of Ti6Al4V/CoCrMo biomedical composite fabricated by semi-solid sintering [EB/OL]. (2021-01-03). https://link.springer.com/article/10.1007/s10921-020-00742-w#citeas.
|
30 |
杜凤丽. 命运多舛的美国首座商业化熔盐塔式光热电站有望重新投运 [EB/OL]. (2021-08-30). http://cnste.org/html/xiangmu/2021/0830/8198.html. DU Feng-li. The ill fated first commercial molten salt tower photothermal power plant in the United States is expected to be put into operation again [EB/OL]. (2021-08-30). http://cnste.org/html/xiangmu/2021/0830/8198.html.
|
31 |
FERRI R, CAMMI A, MAZZEI D Molten salt mixture properties in RELAP5 code for thermodynamic solar applications[J]. International Journal of Thermal Sciences, 2008, 47 (12): 1676- 1687
doi: 10.1016/j.ijthermalsci.2008.01.007
|
32 |
谭昌伟, 王纪华, 黄义德, 等 运用光谱技术改进Beer-Lambert定律的定量化及其应用研究[J]. 中国农业科学, 2005, 38 (3): 498- 503 TAN Chang-wei, WANG Ji-hua, HUANG Yi-de, et al Improving the quantification and application of the Beer-Lambert law by spectroscopic technique[J]. Scientia Agricultura Sinica, 2005, 38 (3): 498- 503
doi: 10.3321/j.issn:0578-1752.2005.03.011
|
33 |
IVERSON B D, BROOME S T, KRUIZENGA A M, et al Thermal and mechanical properties of nitrate thermal storage salts in the solid-phase[J]. Solar Energy, 2012, 86 (10): 2897- 2911
doi: 10.1016/j.solener.2012.03.011
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|