Please wait a minute...
浙江大学学报(工学版)  2020, Vol. 54 Issue (10): 1971-1977    DOI: 10.3785/j.issn.1008-973X.2020.10.014
能源工程、机械工程     
直埋电缆回填土导热系数测试
吕洪坤1(),吴宇豪2,*(),冯彦皓2,汪明军1,俞自涛2
1. 国网浙江省电力有限公司 电力科学研究院,浙江 杭州 310006
2. 浙江大学 热工与动力系统研究所,浙江 杭州 310027
Measurement of thermal conductivity of backfill soil for buried power cable
Hong-kun LV1(),Yu-hao WU2,*(),Yan-hao FENG2,Ming-jun WANG1,Zi-tao YU2
1. Institute of Electric Power, State Grid Zhejiang Electric Power Limited Company, Hangzhou 310006, China
2. Institute of Thermal Science and Power Systems, Zhejiang University, Hangzhou 310027, China
 全文: PDF(1451 KB)   HTML
摘要:

为了测定直埋电缆回填土的导热系数并探究导热系数随水质量分数的变化规律,采集浙江省境内掩深为0.7~1.2 m的5种土壤,分别配制了水质量分数为0%、5%、10%、15%、20%和25%的充分压实的试样,利用热探针法测试了各试样在(20±1) °C时的导热系数. 结果表明:不同土壤的导热系数随水质量分数递增最快的区间不同,如粗骨土为10%~15%,潮土为15%~20%,红壤为20%~25%;水质量分数超过20%后,水稻土、红壤和黄壤的导热系数随着水质量分数递增,粗骨土和潮土的导热系数减小;不同土壤的导热系数差别较大,如粗骨土的导热系数是相同条件下黄壤的2倍左右.

关键词: 回填土压实水质量分数热探针法导热系数    
Abstract:

Five types of soils with depth of 0.7~1.2 m were collected in Zhejiang Province in order to measure the thermal conductivity of backfill soil for buried power cable and explore its variation with water mass fraction. Fully compacted samples with water mass fraction of 0%, 5%, 10%, 15%, 20%, and 25% were prepared. The thermal conductivity of each sample was determined by thermal probe method at (20±1) °C. Results show that the fastest range that thermal conductivity increases monotonically with water mass fraction is diverse among different soils, such as 10%~15% for coarse soil, 15%~20% for fluvo-aquic soil, and 20%~25% for red soil. When the water mass fraction exceeds 20%, the thermal conductivity of paddy soil, red soil and yellow soil increases monotonically with water mass fraction, but that of coarse soil and fluvo-aquic soil decreases. The thermal conductivity of different soils greatly varies. For example, the thermal conductivity of coarse soil is about twice that of yellow soil under the same conditions.

Key words: backfill soil    compaction    water mass fraction    thermal probe method    thermal conductivity
收稿日期: 2019-09-18 出版日期: 2020-10-28
CLC:  TK 121  
基金资助: 国网浙江省电力有限公司资助项目(5211DS17002N)
通讯作者: 吴宇豪     E-mail: hongkunlv@126.com;11827030@zju.edu.cn
作者简介: 吕洪坤(1981—),男,高级工程师,从事电力系统热能动力研究.orcid.org/0000-0002-0925-271X. E-mail: hongkunlv@126.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
吕洪坤
吴宇豪
冯彦皓
汪明军
俞自涛

引用本文:

吕洪坤,吴宇豪,冯彦皓,汪明军,俞自涛. 直埋电缆回填土导热系数测试[J]. 浙江大学学报(工学版), 2020, 54(10): 1971-1977.

Hong-kun LV,Yu-hao WU,Yan-hao FENG,Ming-jun WANG,Zi-tao YU. Measurement of thermal conductivity of backfill soil for buried power cable. Journal of ZheJiang University (Engineering Science), 2020, 54(10): 1971-1977.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2020.10.014        http://www.zjujournals.com/eng/CN/Y2020/V54/I10/1971

图 1  热探针结构示意图
土类 所属地区 土壤二普地点 实际采样地点
经度/(°) 纬度/(°) 经度/(°) 纬度/(°)
粗骨土 安吉 119.624 30.525 119.612 30.526
水稻土 临安 119.749 30.253 119.788 30.271
红壤 余杭 119.910 30.292 119.908 30.292
潮土 上虞 120.868 30.033 120.868 30.027
黄壤 武义 119.816 28.893 119.806 28.913
表 1  土壤采样情况统计
图 2  土壤试样制备及测试所用的主要仪器和设备
图 3  土壤试样制备流程示意图
图 4  土壤导热系数的测试装置
ww/% $\lambda_{\rm{sd}} $ / (W·m?1·K?1)
粗骨土 水稻土 红壤 潮土 黄壤
0 0.004 0.003 0.004 0.004 0.003
5 0.031 0.014 0.014 0.029 0.008
10 0.074 0.044 0.046 0.051 0.017
15 0.099 0.072 0.047 0.060 0.067
20 0.113 0.099 0.074 0.094 0.053
25 0.090 0.112 0.066 0.090 0.057
表 2  各土壤试样导热系数样本标准差
图 5  各土壤试样干密度-水质量分数曲线
图 6  各土壤试样导热系数-水质量分数曲线
图 7  土壤中的颗粒、团聚体、孔隙和水分示意图
1 梁永春. 高压电力电缆载流量数值计算[M]. 1版. 北京: 国防工业出版社, 2012: 1-3.
2 中国电力企业联合会. 电力工程电缆设计标准: GB 50217-2018 [S]. 北京: 中国计划出版社, 2018: 34-35.
3 陈志龙. 基于有限元法的地下电缆温度场的研究[D]. 武汉: 武汉理工大学, 2014.
CHEN Zhi-long. Research on temperature field of underground cable based on finite element method [D]. Wuhan: Wuhan University of Technology, 2014.
4 胡明丽. 基于多物理场耦合模型的高压电力电缆温度场与载流量计算[D]. 广州: 华南理工大学, 2015.
HU Ming-li. Temperature field and current carrying capacity calculation of high voltage power cable based on multiphysics coupling model [D]. Guangzhou: South China University of Technology, 2015.
5 ROBERTO D L V, FONTANA L, VALLATI A Experimental study of thermal field deriving from an underground electrical power cable buried in non-homogeneous soils[J]. Applied Thermal Engineering, 2014, 62 (2): 390- 397
doi: 10.1016/j.applthermaleng.2013.09.002
6 SALATA F, NARDECCHIA F, ANDREA D L V, et al Underground electric cables a correct evaluation of the soil thermal resistance[J]. Applied Thermal Engineering, 2015, 78: 268- 277
doi: 10.1016/j.applthermaleng.2014.12.059
7 段妍. 土壤热物性参数测试及变化规律实验研究[D]. 太原: 太原理工大学, 2015.
DUAN Yan. Experimental study on soil thermal property parameters test and variation law [D]. Taiyuan: Taiyuan University of Technology, 2015.
8 MOSTAGHIMI R A J, PFENDER E Measurement of thermal conductivities of soils[J]. W?rme-und Stoffübertragung, 1980, 13 (1/2): 3- 9
9 张玲, 黄奕沄, 陈光明 含水分土壤和沙的热导率测定[J]. 制冷与空调, 2008, 8 (5): 66- 68
ZHANG Ling, HUANG Yi-yun, CHEN Guang-ming Determination of thermal conductivity of soil and sand containing water[J]. Refrigeration and Air Conditioning, 2008, 8 (5): 66- 68
10 NICOLAS J, ANDRé P, RIVEZ J, et al Thermal conductivity measurements in soil using an instrument based on the cylindrical probe method[J]. Review of Scientific Instruments, 1993, 64 (3): 774- 780
doi: 10.1063/1.1144158
11 MODI S K, DURGA P B, BASAVARAJ M Effect of moisture content and temperature on thermal conductivity of Psidium guajava L. by line heat source method (transient analysis)[J]. International Journal of Heat and Mass Transfer, 2014, 78: 354- 359
doi: 10.1016/j.ijheatmasstransfer.2014.06.076
12 张忠进, 郎敏, 刘明 线热源法测定金属材料导热系数的原理与测试系统[J]. 吉林大学学报: 工学版, 1996, (1): 80- 84
ZHANG Zhong-jin, LANG Min, LIU Ming Principle and test system for measuring thermal conductivity of metal materials by line heat source method[J]. Journal of Jilin University: Engineering and Technology Edition, 1996, (1): 80- 84
13 中国标准化研究院. 中国土壤分类与代码: GB/T 17296-2009 [S]. 北京: 中国标准出版社, 2009: 1-2.
14 吴嘉平, 荆长伟, 支俊俊. 浙江省土壤数据库及其应用[M]. 1版. 杭州: 浙江大学出版社, 2014: 1-221.
15 国家土壤信息服务平台. 二普典型剖面土种类型[DB/OL]. [2019-07-27]. http://www.soilinfo.cn/map/.
16 隋仲义, 唐伟, 王春明, 等 竹木复合材导热性能的研究[J]. 林业科技, 2006, 31 (1): 50- 51
SUI Zhong-yi, TANG Wei, WANG Chun-ming, et al Study on thermal conductivity of bamboo-wood composites[J]. Forestry Technology, 2006, 31 (1): 50- 51
17 中华人民共和国水利部. 土工试验方法标准: GB/T 50123-1999 [S]. 北京: 中国计划出版社, 1999: 7-56.
18 余无忌. 中国土壤温度特征与年均土壤温度估算方法研究[D]. 沈阳: 沈阳农业大学, 2017.
YU Wu-ji. Study on soil temperature characteristics and annual average soil temperature estimation methods in China [D]. Shenyang: Shenyang Agricultural University, 2017.
19 ABU-HAMDEH N H, KHDAIR A I, REEDER R C A comparison of two methods used to evaluate thermal conductivity for some soils[J]. International Journal of Heat and Mass Transfer, 2001, 44 (5): 1073- 1078
doi: 10.1016/S0017-9310(00)00144-7
20 于明志, 曹西忠, 王善明, 等 水分含量对土壤导热系数的影响及机理[J]. 山东建筑大学学报, 2012, 27 (2): 152- 154
YU Ming-zhi, CAO Xi-zhong, WANG Shan-ming, et al Effect and mechanism of water content on soil thermal conductivity[J]. Journal of Shandong Jianzhu University, 2012, 27 (2): 152- 154
21 皇甫红旺, 晋华 含水率对土壤热物性参数影响的试验研究[J]. 节水灌溉, 2016, (10): 55- 58
HUANG-FU Hong-wang, JIN Hua Experimental study on the effect of water content on soil thermal properties[J]. Water Saving Irrigation, 2016, (10): 55- 58
[1] 王亮,谢海建,吴家葳,陈云敏,丁昊. 填埋场成层衬垫污染物运移参数等效模型[J]. 浙江大学学报(工学版), 2021, 55(3): 519-529.
[2] 孟祥传,周家作,韦昌富,陈盼,张坤,沈正艳. 基于广义Clapeyron方程的含盐土冻结特征曲线模型[J]. 浙江大学学报(工学版), 2020, 54(12): 2377-2385.
[3] 刘旋,巫江虹,鲜婷,冯业. CaCl2·6H2O/EG复合相变材料的制备与性能研究[J]. 浙江大学学报(工学版), 2019, 53(7): 1291-1297.
[4] 周昊,张昆,李亚威,张佳凯. 采用动网格技术的煤粉-玉米秸秆掺烧飞灰沉积数值模拟[J]. 浙江大学学报(工学版), 2019, 53(6): 1139-1147.
[5] 詹良通, 龚标, 兰吉武, 王誉泽, 陈云敏. 黄土中渗滤液的迁移勘察与数值分析[J]. 浙江大学学报(工学版), 2016, 50(6): 1196-1202.
[6] 张旭,刘建忠,吴君宏,赵琛杰,周俊虎,岑可法. 水分随煤阶及水热变化的核磁共振研究[J]. 浙江大学学报(工学版), 2016, 50(1): 123-128.
[7] 姚晓莉, 易思阳, 范利武, 徐旭, 俞自涛, 葛坚. 不同孔隙率下含湿加气混凝土的有效导热系数[J]. 浙江大学学报(工学版), 2015, 49(6): 1101-1107.
[8] 丁晴, 方昕, 范利武, 程冠华, 俞自涛, 胡亚才. 混合纳米填料对复合相变材料导热系数的影响[J]. 浙江大学学报(工学版), 2015, 49(2): 330-335.
[9] 肖玉麒,范利武,洪荣华,徐旭,俞自涛,胡亚才. 纳米填料对储能式散热器性能影响的数值研究[J]. J4, 2013, 47(9): 1644-1649.
[10] 俞亚南, 徐坚, 冯建江. 粉性土导热系数的室内实验研究[J]. J4, 2010, 44(1): 180-183.
[11] 徐旭 俞自涛 胡亚才 范利武 田甜 岑可法. 木材导热系数非线性拟合的神经网络模型[J]. J4, 2007, 41(7): 1201-1204.
[12] 俞自涛 胡亚才 田甜 范利武. 木材横纹有效导热系数的分形模型[J]. J4, 2007, 41(2): 351-355.
[13] 俞自涛 胡亚才 洪荣华 范利武 黄君丽 方梦祥 岑可法. 温度和热流方向对木材传热特性的影响[J]. J4, 2006, 40(1): 123-125.