Please wait a minute...
浙江大学学报(工学版)
电气工程     
不同孔隙率下含湿加气混凝土的有效导热系数
姚晓莉1, 易思阳1, 范利武1, 徐旭2, 俞自涛1, 葛坚3
1. 浙江大学 热工与动力系统研究所,浙江 杭州 310027; 2. 中国计量学院 计量测试工程学院,浙江 杭州 310018;3. 浙江大学 建筑技术研究所,浙江 杭州 310058
Effective thermal conductivity of moist aerated concrete with different porosities
YAO Xiao-li1, YI Si-yang1, FAN Li-wu1, XU Xu2, YU Zi-tao1, GE Jian3
1. Institute of Thermal Science and Power Systems, Zhejiang University, Hangzhou 310027, China;2. College of Metrological and Measurement Engineering, China Jiliang University, Hangzhou 310018, China;3. Institute of Construction Technology, Zhejiang University, Hangzhou 310058, China
 全文: PDF(1434 KB)   HTML
摘要:

为研究含湿蒸压加气混凝土的保温性能,采用基于瞬态平面热源法的Hot Disk热常数分析仪测量不同孔隙率下含湿蒸压加气混凝土的有效导热系数.分析结果表明:Hot Disk热常数分析仪的测量结果具有较好的重复性,适用于含湿建筑材料导热性能的测试. 含湿加气混凝土的有效导热系数随含水率的提高呈现单调增长的趋势,其增长曲线在质量含水率为15%时出现明显的拐点. 当质量含水率约为25%时,含湿加气有效导热系数较干燥试样增大了近一倍;而当质量含水率高达100%时,混凝土的有效导热系数约为干燥试样的4倍. 在相同含水率下,加气混凝土的有效导热系数随孔隙率的增大而逐渐降低. 根据测量数据,总结得到加气混凝土有效导热系数关于孔隙率和质量含水率的预测公式.

Abstract:

The effective thermal conductivity of autoclaved aerated concrete with different porosities was measured using Hot Disk thermal constants analyzer, which is based on the transient plant source technique to investigate, the thermal insulation performance of autoclaved aerated concrete. Data analysis results show that this instrument has good repeatability and is suitable for the thermal conductivity testing of moist building materials. Results also indicated that the effective thermal conductivity of moist aerated concrete increases monotonously with moisture content rising, and an inflection point appears when the moisture fraction is 15%. When the moisture fraction equal 25%, the thermal conductivity of moist samples is nearly twice that of dry samples. When the moisture fraction is as high as 100%, the thermal conductivity is 4 times as that of dry samples. The thermal conductivity of aerated concrete decreased with porosity increasing under the same moisture content. The predictor formulas for the effective thermal conductivity of aerated concrete about porosity and moisture fraction was proposed.

出版日期: 2015-06-01
:  TU 528  
基金资助:

国家自然科学基金资助项目(51378482);中低温热能高效利用教育部重点实验室(天津大学)开放课题(201301302)

通讯作者: 范利武,男,副教授     E-mail: liwufan@zju.edu.cn
作者简介: 姚晓莉(1989—),女,硕士生,从事建筑节能技术研究. E-mail: yhan23@sina.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

姚晓莉, 易思阳, 范利武, 徐旭, 俞自涛, 葛坚. 不同孔隙率下含湿加气混凝土的有效导热系数[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008-973X.2015.06.014.

YAO Xiao-li, YI Si-yang, FAN Li-wu, XU Xu, YU Zi-tao, GE Jian.

Effective thermal conductivity of moist aerated concrete with different porosities
. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008-973X.2015.06.014.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2015.06.014        http://www.zjujournals.com/eng/CN/Y2015/V49/I6/1101

[1] ROPELEWSKI L, NEUFELD R D. Thermal inertia properties of autoclaved aerated concrete [J]. Journal of Energy Engineering, 1999, 125(2): 59-75.
[2] BOUGUERRA A. Prediction of effective thermal conductivity of moist wood concrete [J]. Journal of Physics D: Applied Physics, 1999, 32(12): 1407.
[3] BHATTACHARJEE B, ASCE M, KRISHNAMOORTHY S. Permeable porosity and thermal conductivity of construction materials [J]. Journal of Materials in Civil Engineering, 2004, 16(4): 322-330.
[4] DOS SANTOS W N. Effect of moisture and porosity on the thermal properties of a conventional refractory concrete [J]. Journal of the European Ceramic Society, 2003, 23(5): 745-755.
[5] YU Z T, XU X, FAN L W, et al. Experimental measurements of thermal conductivity of wood species in China: effects of density, temperature, and moisture content [J]. Forest Products Journal, 2011, 61(2): 130-135.
[6] SHAKUN W. The causes and control of mold and mildew in hot and humid climates [J]. ASHRAE Transactions, 1992, 98(1): 1282-1292.

 

 


[7] CAMPBELL-ALLEN D, THORNE C P. The thermal conductivity of concrete [J]. Magazine of Concrete Research, 1963, 15(43): 39-48.

[8] KHAN M I. Factors affecting the thermal properties of concrete and applicability of its prediction models [J]. Building and Environment, 2002, 37(6): 607-614.

[9] MAHONKOV E, JIIKOV M, PAVLK Z, et al. Effect of moisture on the thermal conductivity of a cementitious composite [J]. International Journal of Thermophysics, 2006, 27(4): 1228-1240.
[10] KIM K H, JEON S E, KIM J K, et al. An experimental study on thermal conductivity of concrete [J]. Cement and Concrete Research, 2003, 33(3): 363-371.
[11] CLARKE J A, YANESKE P P. A rational approach to the harmonisation of the thermal properties of building materials [J]. Building and Environment, 2009, 44(10): 2046-2055.
[12] STUCKES A D, SIMPSON A. The effect of moisture on the thermal conductivity of aerated concrete [J]. Building Services Engineering Research and Technology, 1985, 6(2): 49-53.
[13] 胡亚才,范利武,黄君丽,等.瞬态法测量木材热物性的理论与实验研究[J].浙江大学学报:工学版,2006, 39(11): 1793-1796.
HU Ya-cai, FAN Li-wu, HUANG Jun-li, et al. Theoretical and experimental study on transient measurement of wood thermal properties [J]. Journal of Zhejiang University: Engineering Science, 2006, 39(11): 1793-1796.
[14] ASTM C642, Standard test method for density, absorption, and voids in hardened concrete [S]. Philadelphia: ASTM, 2001.
[15] BOUGUERRA A, LAURENT J P, GOUAL M S, et al. The measurement of the thermal conductivity of solid aggregates using the transient plane source technique [J]. Journal of Physics D: Applied Physics, 1997, 30(20): 2900-2904.
[16] ISO 15901-1:  2005, Pore-size distribution and porosimetry of solid materials by mercury porosimetry and gas adsorption-Part 1: Mercury porosimetry [S]. ISO International Organization for Standardization, 2005.
 
[17] KORONTHALYOVA O, MATIASOVSKY P. Thermal conductivity of fiber reinforced porous calcium silicate hydrate-based composites [J]. Journal of Thermal Envelope and Building Science, 2003, 27(1): 71-89.
[18] RUDTSCH S. Thermal conductivity measurements for the separation of heat and mass diffusion in moist porous materials [J]. High Temperatures-High Pressures, 2000, 32(4): 487-492.
[19] 于明志,隋晓凤,彭晓峰.堆积型含湿多孔介质有效导热系数测试实验研究[J].山东建筑大学学报,2009, 23(5): 385-388.
YU Ming-zhi, SUI Xiao-feng, PENG Xiao-feng. Experimental study on thermal conductivity measurement of wet unconsolidated porous media [J]. Journal of Shandong Jianzhu University, 2009, 23(5): 385-388.
[20] 王贞尧,吴晓,王圣妹,等.含有结构水的多孔材料有效导热系数研究及预测[J].无机材料学报,1987, 2(2): 183-188.
WANG Zhen-nao, WU Xiao, WANG Sheng-mei, et al. Study and prediction of thermal conductivity of porous materials with structural water [J]. Journal of Inorganic Materials, 1987, 2(2): 183-188.
[21] 胡亚才,范利武,俞自涛,等.木材微结构对其传热特性影响的实验研究[J].工程热物理学报, 2005, 26: 210-212.
 
HU Ya-cai, FAN Li-wu, YU Zi-tao, et al. Experimental research on the effect of microstructures on the heat transfer properties of wood [J]. Journal of Engineering Thermophysics, 2005, 26: 210-212.
[1] 欧祖敏, 孙璐. 冻融损伤混凝土的弯曲疲劳寿命可靠性分析[J]. 浙江大学学报(工学版), 2017, 51(6): 1074-1081.
[2] 李静, 王哲. 似平面应力条件下混凝土的变形特性[J]. 浙江大学学报(工学版), 2017, 51(4): 745-751.
[3] 温小栋, 蔡煜梁, 赵莉, 冯蕾. 凝灰岩机制砂混凝土抗低温硫酸盐侵蚀性[J]. 浙江大学学报(工学版), 2017, 51(3): 532-537.
[4] 熊海贝,曹纪兴,张凤亮. 含加强层框筒结构位移监测方法[J]. 浙江大学学报(工学版), 2016, 50(9): 1752-1760.
[5] 吴萌, 姬永生, 陈晓峰, 张领雷, 陈向东. 超细粉煤灰对碳硫硅钙石型硫酸盐破坏的影响[J]. 浙江大学学报(工学版), 2016, 50(8): 1479-1485.
[6] 熊海贝, 李奔奔, 江佳斐. FRP约束混凝土圆柱应力-应变模型的适用性[J]. 浙江大学学报(工学版), 2015, 49(12): 2363-2375.
[7] 段安, 张大伟, ALNAGGAR Mohammed. 微平面模型模拟ASR作用下混凝土力学行为[J]. 浙江大学学报(工学版), 2015, 49(10): 1939-1945.
[8] 杜明月, 田野, 金南国, 王宇纬, 金贤玉. 基于水泥水化的早龄期混凝土温湿耦合[J]. 浙江大学学报(工学版), 2015, 49(8): 1410-1416.
[9] 童晶, 金贤玉, 田野, 金南国. 基于DIC技术的锈蚀钢筋混凝土表面开裂[J]. 浙江大学学报(工学版), 2015, 49(2): 193-199.
[10] 陈军, 金南国, 金贤玉, 洪天从. 基于电阻率法研究混凝土渗透性能演变规律[J]. J4, 2013, 47(4): 575-580.
[11] 俞可权, 陆洲导, 唐安静.
高温后混凝土断裂全过程的裂缝扩展阻力曲线
[J]. J4, 2013, 47(4): 588-594.
[12] 王雪松, 金贤玉, 田野, 李蓓, 金南国. 开裂混凝土中钢筋加速锈蚀方法适用性[J]. J4, 2013, 47(4): 565-574.
[13] 谢中凯,刘国华. 近似熵在混凝土结构损伤识别中的应用[J]. J4, 2013, 47(3): 456-464.
[14] 王雪松, 金贤玉, 田野, 金南国. 基于非均匀锈蚀的带肋钢筋黏结性能[J]. J4, 2013, 47(1): 154-161.
[15] 谢中凯, 刘国华, 吴志根. 基于传递熵的梁结构损伤动力识别[J]. J4, 2012, 46(10): 1880-1886.