[1] BENBOUDJEMA F, TORRENTI J M. Early-age behaviour of concrete nuclear containments[J]. Nuclear Engineering and Design, 2008, 238(10):2495-2506.
[2] GASCH T, MALM R, ANSELL A. A coupled hygro-thermo-mechanical model for concrete subjected to variable environmental conditions[J]. International Journal of Solids and Structures, 2016, 91:143-156.
[3] JENDELE L, SMILAUER V, CERVENKA J. Multiscale hydro-thermo-mechanical model for early-age and mature concrete structures[J]. Advances in Engineering Software, 2014, 72(2):134-146.
[4] CHU I, YUN L, AMIN M N, et al. Application of a thermal stress device for the prediction of stresses due to hydration heat in mass concrete structure[J]. Construction and Building Materials, 2013, 45(13):192-198.
[5] CERVERA M, FARIA R, OLIVER J, et al. Numerical modelling of concrete curing, regarding hydration and temperature phenomena[J]. Computers and Structures, 2002, 80(18/19):1511-1521.
[6] CERVERA M, OLIVER J, PRATO T. Thermo-chemo-mechanical model for concrete. Ⅱ:Damage and creep[J]. Journal of Engineering Mechanics, 1999, 125(9):1028-1038.
[7] LACKNER R, MANG H A. Chemoplastic material model for the simulation of early-age cracking:from constitutive law to numerical analyses of massive concrete structures[J]. Cement and Concrete Composites, 2004, 26(5):551-562.
[8] KLEMCZAK B. Prediction of coupled heat and moisture transfer in early-age massive concrete structures[J]. Numerical Heat Transfer, Part A:Applications, 2011, 60(3):212-233.
[9] HILAIRE A, BENBOUDJEMA F, DARQUENNES A, et al. Modeling basic creep in concrete at early-age under compressive and tensile loading[J]. Nuclear Engineering and Design, 2014, 269(4):222-230.
[10] 黄耀英, 郑宏, 夏开文, 等. 基于等效时间的混凝土水管冷却等效热传导[J]. 华中科技大学学报:自然科学版, 2012, 40(2):45-48 HUANG Yao-ying, ZHENG Hong, XIA Kai-wen, et al. Study on equivalent heat conduct of concrete using pipe cooling and equivalent time[J]. Journal of Huazhong University of Science and Technology:Natural Science Edition, 2012, 40(2):45-48
[11] 杜明月, 田野, 金南国, 等. 基于水泥水化的早龄期混凝土温湿耦合[J]. 浙江大学学报(工学版), 2015, 49(8):1410-1416 DU M Y, TIAN Y, JIN N G, et al. Coupling of hygro-thermal field in early-age concrete based on cement hydration[J]. Journal of Zhejiang University:Engineering Science, 2015, 49(8):1410-1416
[12] ZHOU W, FENG C, LIU X, et al. A macro-meso chemo-physical analysis of early-age concrete based on a fixed hydration model[J]. Magazine of Concrete Research, 2016, 68(19):81-994.
[13] ZHOU W, FENG C, LIU X, et al. Contrastive numerical investigations on thermo-structural behaviors in mass concrete with various cements[J]. Materials, 2016, 9(5):378.
[14] 刘光廷, 高政国. 三维凸型混凝土骨料随机投放算法[J]. 清华大学学报:自然科学版, 2003, 43(8):1120-1123 LIU Guang-ting, GAO Zheng-guo. Random 3-D aggregate structure for concrete[J]. Journal of Tsinghua University:Science and Technology, 2003, 43(8):1120-1123
[15] 马怀发, 陈厚群, 吴建平等. 大坝混凝土三维细观力学数值模型研究[J]. 计算力学学报, 2008, 25(2):241-247 MA Huai-fa, CHEN Hou-qun, WU Jian-ping, et al. Study on numerical algorithm of 3D meso-mechanics model of dam concrete[J]. Chinese Journal of Computational Mechanics, 2008, 25(2):241-247
[16] 唐春安, 朱万成. 混凝土损伤与断裂-数值试验[M]. 北京:科学出版社, 2003:10-143
[17] SCHUTTER G D, TAERWE L. General hydration model for portland cement and blast furnace slag cement[J]. Cement and Concrete Research, 1995, 25(3):593-604.
[18] BENTZ D P, WALLER V, LARRARD F D. Prediction of adiabatic temperature rise in conventional and high-performance concretes using a 3-D microstructural model[J]. Cement and Concrete Research, 1998, 28(2):285-297.
[19] SCHUTTER G D. Degree of hydration based Kelvin model for the basic creep of early age concrete[J]. Materials and Structures, 1999, 32(4):260-265.
[20] MAZARS J. A description of micro-and macroscale damage of concrete structures[J]. Engineering Fracture Mechanics, 1986, 25(5/6):729-737.
[21] TORRENTI J M, BENBOUDJEMA F. Mechanical threshold of cementitious materials at early age[J]. Materials and Structures, 2005, 38(3):299-304.
[22] SCHUTTER G D, TAERWE L. Degree of hydration-based description of mechanical properties of early age concrete[J]. Materials and Structures, 1996, 29(6):335-344.
[23] SCHUTTER G D, TAERWE L. Fracture energy of concrete at early ages[J]. Materials and Structures, 1997, 30(2):67-71.
[24] PIJAUDIER-CABOT G, BAZANT Z P. Nonlocal damage theory[J]. Journal of Engineering Mechanics, 1987, 113(10):1512-1533.
[25] JIRÁSEK M, BAUER M. Numerical aspects of the crack band approach[J]. Computers and Structures, 2012, 110(10):60-78.
[26] BENTZ D P. Transient plane source measurements of the thermal properties of hydrating cement pastes[J]. Materials and Structures, 2007, 40(10):1073-1080.
[27] ZHANG Y, PICHLER C, YUAN Y, et al. Micromechanics-based multifield framework for early-age concrete[J]. Engineering Structures, 2014, 47(1):16-24.
[28] YANG C C. Effect of the transition zone on the elastic moduli of mortar[J]. Cement and Concrete Research, 1998, 28(5):727-736.
[29] 唐欣薇. 基于宏细观力学的混凝土破损行为研究[D]. 北京:清华大学, 2009:23-57 TANG Xin-wei. Study on damage and fracture behavior of concrete based on macro and meso mechanics[D]. Beijing:Tsinghua University, 2009:23-57 |