Please wait a minute...
浙江大学学报(工学版)  2021, Vol. 55 Issue (8): 1576-1584    DOI: 10.3785/j.issn.1008-973X.2021.08.019
能源工程     
面向平板结构钙钛矿太阳能电池的金属氧化物综述
肖黎1(),陈远豪1,梁昌兴1,姚建曦2
1. 重庆理工大学 绿色能源材料技术与系统重庆市重点实验室,重庆 400054
2. 华北电力大学 能源安全与清洁利用北京市重点实验室,北京 102206
Review on metal-oxide materials applied in planar perovskite solar cells
Li XIAO1(),Yuan-hao CHEN1,Chang-xing LIANG1,Jian-xi YAO2
1. Chongqing Key Laboratory of Green Energy Materials Technology and Systems, Chongqing University of Technology, Chongqing 400054, China
2. Beijing Key Laboratory of Energy Safety and Clean Utilization, North China Electric Power University, Beijing 102206, China
 全文: PDF(1043 KB)   HTML
摘要:

作为平板结构钙钛矿太阳能电池的电荷传输层,金属氧化物薄膜对器件性能有重要影响. 系统性概述平板结构钙钛矿太阳能电池对金属氧化物薄膜形貌、电学、光学、化学及热等物理特性要求,并对目前在高效钙钛矿太阳电池制备中最有前景的金属氧化物电子传输层及空穴传输层材料特性及代表性工作进行总结. 针对大多数金属氧化物迁移率低、表面缺陷多及能级匹配差的问题,分析元素掺杂、表面改性、复合薄膜设计等手段解决的相关进展. 总结目前金属氧化物薄膜沉积技术现状及优缺点,探讨今后薄膜沉积技术发展、改进方向. 对低温沉积金属氧化物薄膜在柔性器件方面的应用进行展望.

关键词: 金属氧化物平板结构钙钛矿太阳能电池物理特性电荷传输层薄膜沉积技术    
Abstract:

As the carrier transport layer in planar perovskite solar cells, metal oxide films have important influence on device properties. The requirements of metal oxide films for planar solar cells in the respect of the morphology, electrical, optical, chemical and thermal properties were systematically overviewed. Worthwhile, the materials characteristic and representative work involving the most promising metal oxide film work as electron transport layer or hole transport layer material were summarized. Research progress of adopting methods such as element doping of metal oxides, surface modification of film and design of composite metal oxide film to improving film mobility, minimizing surface defects and adjusting energy level were proposed. Moreover, the future requirement and the improvement direction of metal oxide thin film deposition technology were discussed after summarizing the advantages and disadvantages of the deposition technology. Finally, the application of low-temperature deposited metal oxide films in flexible devices was expected.

Key words: metal oxide    planar perovskite solar cell    physical property    electron transfer layer    thin film deposition technology
收稿日期: 2021-01-25 出版日期: 2021-09-01
CLC:  TM 23  
基金资助: 重庆市教育委员会科学技术研究资助项目(KJQN201801123);重庆理工大学科研启动基金资助项目(2019ZD12)
作者简介: 肖黎(1990—),女,讲师,博士,从事新能源材料与器件研究. orcid.org/0000-0002-2844-1292. E-mail: xiaoli@cqut.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
肖黎
陈远豪
梁昌兴
姚建曦

引用本文:

肖黎,陈远豪,梁昌兴,姚建曦. 面向平板结构钙钛矿太阳能电池的金属氧化物综述[J]. 浙江大学学报(工学版), 2021, 55(8): 1576-1584.

Li XIAO,Yuan-hao CHEN,Chang-xing LIANG,Jian-xi YAO. Review on metal-oxide materials applied in planar perovskite solar cells. Journal of ZheJiang University (Engineering Science), 2021, 55(8): 1576-1584.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2021.08.019        https://www.zjujournals.com/eng/CN/Y2021/V55/I8/1576

图 1  钙钛矿太阳能电池效率发展图示
图 2  常见平板结构PSCs典型结构
图 3  典型平板结构PSCs器件能级匹配及载流子传输示意图[9]
图 4  FTO上原子力沉积、旋涂及旋涂结合化学浴沉积SnO2致密薄膜的表面扫描电镜图片[12]
材料种类 VBM/eV CBM/eV Eg/eV μ/(cm2·V?1·s?1
ETL


TiO2 ?7.3 ?4.1 3.0~3.2 1
SnO2 ?7.9 ?4.3 3.6~4.0 250
ZnO ?7.47 ?4.17 3.3 200
Zn2SnO4 ?7.9 ?4.1 3.8 10~30
HTL NiOx ?5.0~?5.4 ?1.29 3.71~4.11 2.8
CuOx ?5.4 ?3.3~?4.1 1.4~2.1 100
表 1  主要电荷传输材料的特性参数[8,10]
图 5  溶液旋涂法制备金属氧化物薄膜示意图
图 6  化学浴沉积法制备金属氧化物薄膜示意图[12]
图 7  原子层沉积制备金属氧化物薄膜示意图[41]
图 8  激光脉冲法沉积金属氧化物薄膜技术示意图[36]
图 9  阳极氧化法与旋涂法结合方法制备SnO2@TiO2双层电子传输层示意图[47]
1 Al-ASHOURI A, KOHNEN E, LI B, et al Monolithic perovskite/silicon tandem solar cell with > 29% efficiency by enhanced hole extraction[J]. Science, 2020, 370 (6522): 1300- 1309
doi: 10.1126/science.abd4016
2 LIN Y, SAKAI N, DA P, et al A piperidinium salt stabilizes efficient metal-halide perovskite solar cells[J]. Science, 2020, 369 (6499): 96- 102
doi: 10.1126/science.aba1628
3 KIM J, YUN J, CHO Y, et al Overcoming the challenges of large area high efficiency perovskite solar cells[J]. ACS Energy Letters, 2017, 2 (9): 1978- 1984
doi: 10.1021/acsenergylett.7b00573
4 降戎杰, 张雅洁, 郭强, 等 钙钛矿薄膜制备技术及其在大面积太阳电池中的应用[J]. 微纳电子技术, 2019, 56 (507): 18- 23
JIANG Rong-jie, ZHANG Ya-jie, GUO Qiang, et al Perovskite thin film preparation technology and its application in large-area solar cells[J]. Micronanoelectronic Technology, 2019, 56 (507): 18- 23
5 WANG R, HUANG T, XUE J, et al Prospects for metal halide perovskite-based tandem solar cells[J]. Nature Photonics, 2021, 15: 411- 425
6 BURSCHKA J, PELLET N, MOON S J, et al Sequential deposition as a route to high-performance perovskite-sensitized solar cells[J]. Nature, 2013, 499 (7458): 316- 319
doi: 10.1038/nature12340
7 LIU M, JOHNSTON M B, SNAITH H J Efficient planar heterojunction perovskite solar cells by vapour deposition[J]. Nature, 2013, 501 (7467): 395
doi: 10.1038/nature12509
8 ZHOU Y, LI X, LIN H To be higher and stronger-metal oxide electron transport materials for perovskite solar cells[J]. Small, 2019, 16 (15): 1902579
9 PENG J, DUONG T, ZHOU X, et al Efficient indiu-doped tiox electron transport layers for high-performance perovskite solar cells and perovskite-silicon tandems[J]. Advanced Energy Materials, 2016, 7 (4): 1601768
10 HAQUE M A, SHEIKH A D, GUAN X, et al Metal oxides as efficient charge transporters in perovskite solar cells[J]. Advanced Energy Materials, 2017, 7 (20): 1602803
doi: 10.1002/aenm.201602803
11 MARCHIORO A, TEUSCHER J, FRIEDRICH D, et al Unravelling the mechanism of photoinduced charge transfer processes in lead iodide perovskite solar cells[J]. Nature Photonics, 2014, 8 (3): 250- 255
doi: 10.1038/nphoton.2013.374
12 ANARAKI E H, KERMANPUR A, STEIER L, et al Highly efficient and stable planar perovskite solar cells by solution-processed tin oxide[J]. Energy and Environmental Science, 2016, 9 (10): 3128- 3134
doi: 10.1039/C6EE02390H
13 YANG G, TAO H, QIN P, et al Recent progress in electron transport layers for efficient perovskite solar cells[J]. Journal of Materials Chemistry A, 2016, 4 (11): 3970- 3990
doi: 10.1039/C5TA09011C
14 KOJIMA A, TESHIMA K, SHIRAI Y, et al Organometal halide perovskites as visible-light sensitizers for photovoltaic cells[J]. Journal of the American Chemical Society, 2009, 131 (17): 6050- 6051
doi: 10.1021/ja809598r
15 PALLIKKARA A, RAMAKRISHNAN K Efficient charge collection of photoanodes and light absorption of photosensitizers: a review[J]. International Journal of Energy Research, 2020, 45 (2): 1425- 1448
16 JIANG L L, WANG Z K, LI M, et al Enhanced electrical property of compact TiO2 layer via platinum doping for high-performance perovskite solar cells [J]. Solar RRL, 2018, 2 (11): 1800149
doi: 10.1002/solr.201800149
17 MAHMUD M A, DUONG T, YIN Y, et al In situ formation of mixed-dimensional surface passivation layers in perovskite solar cells with dual-isomer alkylammonium cations[J]. Small, 2020, 16 (49): 2005022
doi: 10.1002/smll.202005022
18 JIANG Q, ZHANG X, YOU J SnO2: a wonderful electron transport layer for perovskite solar cells [J]. Small, 2018, 14 (31): 1801154
doi: 10.1002/smll.201801154
19 KE W, FANG G, LIU Q, et al Low-temperature solution-processed tin oxide as an alternative electron transporting layer for efficient perovskite solar cells[J]. Journal of the American Chemical Society, 2015, 137 (21): 6730- 6733
doi: 10.1021/jacs.5b01994
20 LI L, ZHOU N, CHEN Q, et al Unraveling the growth of hierarchical quasi-2D/3D perovskite and carrier dynamics[J]. Journal of Physical Chemistry Letters, 2018, 9 (5): 1124- 1132
doi: 10.1021/acs.jpclett.7b03294
21 BU T, LI J, ZHENG F, et al Universal passivation strategy to slot-die printed SnO2 for hysteresis-free efficient flexible perovskite solar module [J]. Nature Communications, 2018, 9 (4609): 1- 10
22 JIANG Q, ZHAO Y, ZHANG X, et al Surface passivation of perovskite film for efficient solar cells[J]. Nature Photonics, 2019, 13 (7): 460- 466
doi: 10.1038/s41566-019-0398-2
23 SUN Q, LI H, GONG X, et al Interconnected SnO2 nanocrystals electron transport layer for highly efficient flexible perovskite solar cells [J]. Solar RRL, 2020, 4 (2): 1900229
doi: 10.1002/solr.201900229
24 QIU Z, GONG H, ZHENG G, et al Enhanced physical properties of pulsed laser deposited NiO films via annealing and lithium doping for improving perovskite solar cell efficiency[J]. Journal of Materials Chemistry C, 2017, 5 (28): 7084- 7094
doi: 10.1039/C7TC01224A
25 MA F, ZHAO Y, LI J, et al Nickel oxide for inverted structure perovskite solar cells[J]. Journal of Energy Chemistry, 2021, 52: 393- 411
doi: 10.1016/j.jechem.2020.04.027
26 YIN X, GUO Y, XIE H, et al Nickel oxide as efficient hole transport materials for perovskite solar cells[J]. Solar RRL, 2019, 3 (5): 1900001
doi: 10.1002/solr.201900001
27 HU L, PENG J, WANG W, et al Sequential deposition of CH3NH3PbI3 on planar NiO film for efficient planar perovskite solar cells [J]. ACS Photonics, 2014, 1 (7): 67- 76
28 RU P, BI E, ZHANG Y, et al High electron affinity enables fast hole extraction for efficient flexible inverted perovskite solar cells[J]. Advanced Energy Materials, 2020, 10 (12): 1903487
doi: 10.1002/aenm.201903487
29 CAO J, YU H, ZHOU S, et al Low-temperature solution-processed NiOx films for air-stable perovskite solar cells [J]. Journal of Materials Chemistry A, 2017, 5 (22): 11071- 11077
doi: 10.1039/C7TA02228J
30 NEJAND B A, AHMADI V, GHARIBZADEH S, et al Cuprous oxide as a potential low-cost hole-transport material for stable perovskite solar cells[J]. ChemSusChem, 2016, 9 (3): 302- 313
doi: 10.1002/cssc.201501273
31 HOSSAIN M I, ALHARBI F H, TABET N Copper oxide as inorganic hole transport material for lead halide perovskite based solar cells[J]. Solar Energy, 2015, 120: 370- 380
doi: 10.1016/j.solener.2015.07.040
32 SUN W, LI Y, YE S, et al High-performance inverted planar heterojunction perovskite solar cells based on solution-processed CuOx hole transport layer [J]. Nanoscale, 2016, 8 (20): 10806- 10813
doi: 10.1039/C6NR01927G
33 RAO H, YE S, SUN W, et al A 19.0% efficiency achieved in CuOx-based inverted CH3NH3PbI3−xClx solar cells by an effective Cl doping method [J]. Nano Energy, 2016, 27: 51- 57
doi: 10.1016/j.nanoen.2016.06.044
34 LIU C, ZHOU X, CHEN S, et al Hydrophobic Cu2O quantum dots enabled by surfactant modification as top hole-transport materials for efficient perovskite solar cells [J]. Advanced Science, 2019, 6 (7): 1801169
doi: 10.1002/advs.201801169
35 ZUO C, DING L Solution-processed Cu2O and CuO as hole transport materials for efficient perovskite solar cells [J]. Small, 2015, 11 (41): 5528- 5532
doi: 10.1002/smll.201501330
36 WILKES G C, DENG X, CHOI J J, et al Laser annealing of TiO2 electron transporting layer in perovskite solar cells [J]. ACS Applied Materials and Interfaces, 2018, 10 (48): 41312- 41317
doi: 10.1021/acsami.8b13740
37 TAN H, JAIN A, VOZNYY O, et al Efficient and stable solution-processed planar perovskite solar cells via contact passivation[J]. Science, 2017, 355 (6326): 722- 726
doi: 10.1126/science.aai9081
38 YOO J J, SEO G, CHUA M R, et al Efficient perovskite solar cells via improved carrier management[J]. Nature, 2021, 590 (7847): 587- 593
doi: 10.1038/s41586-021-03285-w
39 WU W Q, CHEN D, CHENG Y B, et al Low-temperature solution-processed amorphous titania nanowire thin films for 1 cm2 perovskite solar cells [J]. ACS Applied Materials and Interfaces, 2020, 12 (10): 11450- 11458
doi: 10.1021/acsami.9b19041
40 DU M, ZHU X, WANG L, et al High-pressure nitrogen-extraction and effective passivation to attain highest large-area perovskite solar module efficiency[J]. Advanced Materials, 2020, 32 (47): 2004979
doi: 10.1002/adma.202004979
41 XING Z, XIAO J, HU T, et al Atomic layer deposition of metal oxides in perovskite solar cells: present and future[J]. Small Methods, 2020, 4 (12): 2000588
doi: 10.1002/smtd.202000588
42 KAVAN L, STEIER L, GRÄTZEL M Ultrathin buffer layers of SnO2 by atomic layer deposition: perfect blocking function and thermal stability [J]. The Journal of Physical Chemistry C, 2017, 121 (1): 342- 350
doi: 10.1021/acs.jpcc.6b09965
43 SEO S, PARK I J, KIM M, et al An ultra-thin, un-doped NiO hole transporting layer of highly efficient (16.4%) organic-inorganic hybrid perovskite solar cells[J]. Nanoscale, 2016, 8 (22): 11403- 11412
doi: 10.1039/C6NR01601D
44 XIAO K, LIN R, HAN Q, et al All-perovskite tandem solar cells with 24.2% certified efficiency and area over 1 cm2 using surface-anchoring zwitterionic antioxidant [J]. Nature Energy, 2020, 5 (11): 870- 880
doi: 10.1038/s41560-020-00705-5
45 LIU C, YANG Y, OLGA A S, et al α-CsPbI3 bilayers via one-step deposition for efficient and stable all-inorganic perovskite solar cells [J]. Advanced Materials, 2020, 32 (32): 2002632
doi: 10.1002/adma.202002632
46 MIAO X, WANG S, SUN W, et al Effect of Cu2O content in electrodeposited CuOx film on perovskite solar cells [J]. Nano, 2019, 14 (10): 1950126
doi: 10.1142/S1793292019501261
47 SONG S, KANG G, PYEON L, et al Systematically optimized bilayered electron transport layer for highly efficient planar perovskite solar cells[J]. ACS Energy Letters, 2017, 2 (12): 2667- 2673
doi: 10.1021/acsenergylett.7b00888
48 YANG D, YANG R, ZHANG J, et al High efficiency flexible perovskite solar cells using superior low temperature TiO2[J]. Energy and Environmental Science, 2015, 8: 3208- 3214
doi: 10.1039/C5EE02155C
49 XU R, LI Y, FENG S, et al Enhanced performance of planar perovskite solar cells using Ce-doped TiO2 as electron transport layer [J]. Journal of Materials Science, 2020, 55 (14): 5681- 5689
doi: 10.1007/s10853-020-04409-9
50 DENG K, CHEN Q, LI L. Modification engineering in SnO2 electron transport layer toward perovskite solar cells: efficiency and stability[J]. 2020, 30(46): 2004209.
[1] 黄龙, 梁海莲, 顾晓峰, 董树荣, 毕秀文, 魏志芬. 多晶硅栅对LDMOS-SCR器件ESD防护性能的影响[J]. 浙江大学学报(工学版), 2015, 49(2): 366-370.