能源工程 |
|
|
|
|
面向平板结构钙钛矿太阳能电池的金属氧化物综述 |
肖黎1( ),陈远豪1,梁昌兴1,姚建曦2 |
1. 重庆理工大学 绿色能源材料技术与系统重庆市重点实验室,重庆 400054 2. 华北电力大学 能源安全与清洁利用北京市重点实验室,北京 102206 |
|
Review on metal-oxide materials applied in planar perovskite solar cells |
Li XIAO1( ),Yuan-hao CHEN1,Chang-xing LIANG1,Jian-xi YAO2 |
1. Chongqing Key Laboratory of Green Energy Materials Technology and Systems, Chongqing University of Technology, Chongqing 400054, China 2. Beijing Key Laboratory of Energy Safety and Clean Utilization, North China Electric Power University, Beijing 102206, China |
引用本文:
肖黎,陈远豪,梁昌兴,姚建曦. 面向平板结构钙钛矿太阳能电池的金属氧化物综述[J]. 浙江大学学报(工学版), 2021, 55(8): 1576-1584.
Li XIAO,Yuan-hao CHEN,Chang-xing LIANG,Jian-xi YAO. Review on metal-oxide materials applied in planar perovskite solar cells. Journal of ZheJiang University (Engineering Science), 2021, 55(8): 1576-1584.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2021.08.019
或
https://www.zjujournals.com/eng/CN/Y2021/V55/I8/1576
|
1 |
Al-ASHOURI A, KOHNEN E, LI B, et al Monolithic perovskite/silicon tandem solar cell with > 29% efficiency by enhanced hole extraction[J]. Science, 2020, 370 (6522): 1300- 1309
doi: 10.1126/science.abd4016
|
2 |
LIN Y, SAKAI N, DA P, et al A piperidinium salt stabilizes efficient metal-halide perovskite solar cells[J]. Science, 2020, 369 (6499): 96- 102
doi: 10.1126/science.aba1628
|
3 |
KIM J, YUN J, CHO Y, et al Overcoming the challenges of large area high efficiency perovskite solar cells[J]. ACS Energy Letters, 2017, 2 (9): 1978- 1984
doi: 10.1021/acsenergylett.7b00573
|
4 |
降戎杰, 张雅洁, 郭强, 等 钙钛矿薄膜制备技术及其在大面积太阳电池中的应用[J]. 微纳电子技术, 2019, 56 (507): 18- 23 JIANG Rong-jie, ZHANG Ya-jie, GUO Qiang, et al Perovskite thin film preparation technology and its application in large-area solar cells[J]. Micronanoelectronic Technology, 2019, 56 (507): 18- 23
|
5 |
WANG R, HUANG T, XUE J, et al Prospects for metal halide perovskite-based tandem solar cells[J]. Nature Photonics, 2021, 15: 411- 425
|
6 |
BURSCHKA J, PELLET N, MOON S J, et al Sequential deposition as a route to high-performance perovskite-sensitized solar cells[J]. Nature, 2013, 499 (7458): 316- 319
doi: 10.1038/nature12340
|
7 |
LIU M, JOHNSTON M B, SNAITH H J Efficient planar heterojunction perovskite solar cells by vapour deposition[J]. Nature, 2013, 501 (7467): 395
doi: 10.1038/nature12509
|
8 |
ZHOU Y, LI X, LIN H To be higher and stronger-metal oxide electron transport materials for perovskite solar cells[J]. Small, 2019, 16 (15): 1902579
|
9 |
PENG J, DUONG T, ZHOU X, et al Efficient indiu-doped tiox electron transport layers for high-performance perovskite solar cells and perovskite-silicon tandems[J]. Advanced Energy Materials, 2016, 7 (4): 1601768
|
10 |
HAQUE M A, SHEIKH A D, GUAN X, et al Metal oxides as efficient charge transporters in perovskite solar cells[J]. Advanced Energy Materials, 2017, 7 (20): 1602803
doi: 10.1002/aenm.201602803
|
11 |
MARCHIORO A, TEUSCHER J, FRIEDRICH D, et al Unravelling the mechanism of photoinduced charge transfer processes in lead iodide perovskite solar cells[J]. Nature Photonics, 2014, 8 (3): 250- 255
doi: 10.1038/nphoton.2013.374
|
12 |
ANARAKI E H, KERMANPUR A, STEIER L, et al Highly efficient and stable planar perovskite solar cells by solution-processed tin oxide[J]. Energy and Environmental Science, 2016, 9 (10): 3128- 3134
doi: 10.1039/C6EE02390H
|
13 |
YANG G, TAO H, QIN P, et al Recent progress in electron transport layers for efficient perovskite solar cells[J]. Journal of Materials Chemistry A, 2016, 4 (11): 3970- 3990
doi: 10.1039/C5TA09011C
|
14 |
KOJIMA A, TESHIMA K, SHIRAI Y, et al Organometal halide perovskites as visible-light sensitizers for photovoltaic cells[J]. Journal of the American Chemical Society, 2009, 131 (17): 6050- 6051
doi: 10.1021/ja809598r
|
15 |
PALLIKKARA A, RAMAKRISHNAN K Efficient charge collection of photoanodes and light absorption of photosensitizers: a review[J]. International Journal of Energy Research, 2020, 45 (2): 1425- 1448
|
16 |
JIANG L L, WANG Z K, LI M, et al Enhanced electrical property of compact TiO2 layer via platinum doping for high-performance perovskite solar cells [J]. Solar RRL, 2018, 2 (11): 1800149
doi: 10.1002/solr.201800149
|
17 |
MAHMUD M A, DUONG T, YIN Y, et al In situ formation of mixed-dimensional surface passivation layers in perovskite solar cells with dual-isomer alkylammonium cations[J]. Small, 2020, 16 (49): 2005022
doi: 10.1002/smll.202005022
|
18 |
JIANG Q, ZHANG X, YOU J SnO2: a wonderful electron transport layer for perovskite solar cells [J]. Small, 2018, 14 (31): 1801154
doi: 10.1002/smll.201801154
|
19 |
KE W, FANG G, LIU Q, et al Low-temperature solution-processed tin oxide as an alternative electron transporting layer for efficient perovskite solar cells[J]. Journal of the American Chemical Society, 2015, 137 (21): 6730- 6733
doi: 10.1021/jacs.5b01994
|
20 |
LI L, ZHOU N, CHEN Q, et al Unraveling the growth of hierarchical quasi-2D/3D perovskite and carrier dynamics[J]. Journal of Physical Chemistry Letters, 2018, 9 (5): 1124- 1132
doi: 10.1021/acs.jpclett.7b03294
|
21 |
BU T, LI J, ZHENG F, et al Universal passivation strategy to slot-die printed SnO2 for hysteresis-free efficient flexible perovskite solar module [J]. Nature Communications, 2018, 9 (4609): 1- 10
|
22 |
JIANG Q, ZHAO Y, ZHANG X, et al Surface passivation of perovskite film for efficient solar cells[J]. Nature Photonics, 2019, 13 (7): 460- 466
doi: 10.1038/s41566-019-0398-2
|
23 |
SUN Q, LI H, GONG X, et al Interconnected SnO2 nanocrystals electron transport layer for highly efficient flexible perovskite solar cells [J]. Solar RRL, 2020, 4 (2): 1900229
doi: 10.1002/solr.201900229
|
24 |
QIU Z, GONG H, ZHENG G, et al Enhanced physical properties of pulsed laser deposited NiO films via annealing and lithium doping for improving perovskite solar cell efficiency[J]. Journal of Materials Chemistry C, 2017, 5 (28): 7084- 7094
doi: 10.1039/C7TC01224A
|
25 |
MA F, ZHAO Y, LI J, et al Nickel oxide for inverted structure perovskite solar cells[J]. Journal of Energy Chemistry, 2021, 52: 393- 411
doi: 10.1016/j.jechem.2020.04.027
|
26 |
YIN X, GUO Y, XIE H, et al Nickel oxide as efficient hole transport materials for perovskite solar cells[J]. Solar RRL, 2019, 3 (5): 1900001
doi: 10.1002/solr.201900001
|
27 |
HU L, PENG J, WANG W, et al Sequential deposition of CH3NH3PbI3 on planar NiO film for efficient planar perovskite solar cells [J]. ACS Photonics, 2014, 1 (7): 67- 76
|
28 |
RU P, BI E, ZHANG Y, et al High electron affinity enables fast hole extraction for efficient flexible inverted perovskite solar cells[J]. Advanced Energy Materials, 2020, 10 (12): 1903487
doi: 10.1002/aenm.201903487
|
29 |
CAO J, YU H, ZHOU S, et al Low-temperature solution-processed NiOx films for air-stable perovskite solar cells [J]. Journal of Materials Chemistry A, 2017, 5 (22): 11071- 11077
doi: 10.1039/C7TA02228J
|
30 |
NEJAND B A, AHMADI V, GHARIBZADEH S, et al Cuprous oxide as a potential low-cost hole-transport material for stable perovskite solar cells[J]. ChemSusChem, 2016, 9 (3): 302- 313
doi: 10.1002/cssc.201501273
|
31 |
HOSSAIN M I, ALHARBI F H, TABET N Copper oxide as inorganic hole transport material for lead halide perovskite based solar cells[J]. Solar Energy, 2015, 120: 370- 380
doi: 10.1016/j.solener.2015.07.040
|
32 |
SUN W, LI Y, YE S, et al High-performance inverted planar heterojunction perovskite solar cells based on solution-processed CuOx hole transport layer [J]. Nanoscale, 2016, 8 (20): 10806- 10813
doi: 10.1039/C6NR01927G
|
33 |
RAO H, YE S, SUN W, et al A 19.0% efficiency achieved in CuOx-based inverted CH3NH3PbI3−xClx solar cells by an effective Cl doping method [J]. Nano Energy, 2016, 27: 51- 57
doi: 10.1016/j.nanoen.2016.06.044
|
34 |
LIU C, ZHOU X, CHEN S, et al Hydrophobic Cu2O quantum dots enabled by surfactant modification as top hole-transport materials for efficient perovskite solar cells [J]. Advanced Science, 2019, 6 (7): 1801169
doi: 10.1002/advs.201801169
|
35 |
ZUO C, DING L Solution-processed Cu2O and CuO as hole transport materials for efficient perovskite solar cells [J]. Small, 2015, 11 (41): 5528- 5532
doi: 10.1002/smll.201501330
|
36 |
WILKES G C, DENG X, CHOI J J, et al Laser annealing of TiO2 electron transporting layer in perovskite solar cells [J]. ACS Applied Materials and Interfaces, 2018, 10 (48): 41312- 41317
doi: 10.1021/acsami.8b13740
|
37 |
TAN H, JAIN A, VOZNYY O, et al Efficient and stable solution-processed planar perovskite solar cells via contact passivation[J]. Science, 2017, 355 (6326): 722- 726
doi: 10.1126/science.aai9081
|
38 |
YOO J J, SEO G, CHUA M R, et al Efficient perovskite solar cells via improved carrier management[J]. Nature, 2021, 590 (7847): 587- 593
doi: 10.1038/s41586-021-03285-w
|
39 |
WU W Q, CHEN D, CHENG Y B, et al Low-temperature solution-processed amorphous titania nanowire thin films for 1 cm2 perovskite solar cells [J]. ACS Applied Materials and Interfaces, 2020, 12 (10): 11450- 11458
doi: 10.1021/acsami.9b19041
|
40 |
DU M, ZHU X, WANG L, et al High-pressure nitrogen-extraction and effective passivation to attain highest large-area perovskite solar module efficiency[J]. Advanced Materials, 2020, 32 (47): 2004979
doi: 10.1002/adma.202004979
|
41 |
XING Z, XIAO J, HU T, et al Atomic layer deposition of metal oxides in perovskite solar cells: present and future[J]. Small Methods, 2020, 4 (12): 2000588
doi: 10.1002/smtd.202000588
|
42 |
KAVAN L, STEIER L, GRÄTZEL M Ultrathin buffer layers of SnO2 by atomic layer deposition: perfect blocking function and thermal stability [J]. The Journal of Physical Chemistry C, 2017, 121 (1): 342- 350
doi: 10.1021/acs.jpcc.6b09965
|
43 |
SEO S, PARK I J, KIM M, et al An ultra-thin, un-doped NiO hole transporting layer of highly efficient (16.4%) organic-inorganic hybrid perovskite solar cells[J]. Nanoscale, 2016, 8 (22): 11403- 11412
doi: 10.1039/C6NR01601D
|
44 |
XIAO K, LIN R, HAN Q, et al All-perovskite tandem solar cells with 24.2% certified efficiency and area over 1 cm2 using surface-anchoring zwitterionic antioxidant [J]. Nature Energy, 2020, 5 (11): 870- 880
doi: 10.1038/s41560-020-00705-5
|
45 |
LIU C, YANG Y, OLGA A S, et al α-CsPbI3 bilayers via one-step deposition for efficient and stable all-inorganic perovskite solar cells [J]. Advanced Materials, 2020, 32 (32): 2002632
doi: 10.1002/adma.202002632
|
46 |
MIAO X, WANG S, SUN W, et al Effect of Cu2O content in electrodeposited CuOx film on perovskite solar cells [J]. Nano, 2019, 14 (10): 1950126
doi: 10.1142/S1793292019501261
|
47 |
SONG S, KANG G, PYEON L, et al Systematically optimized bilayered electron transport layer for highly efficient planar perovskite solar cells[J]. ACS Energy Letters, 2017, 2 (12): 2667- 2673
doi: 10.1021/acsenergylett.7b00888
|
48 |
YANG D, YANG R, ZHANG J, et al High efficiency flexible perovskite solar cells using superior low temperature TiO2[J]. Energy and Environmental Science, 2015, 8: 3208- 3214
doi: 10.1039/C5EE02155C
|
49 |
XU R, LI Y, FENG S, et al Enhanced performance of planar perovskite solar cells using Ce-doped TiO2 as electron transport layer [J]. Journal of Materials Science, 2020, 55 (14): 5681- 5689
doi: 10.1007/s10853-020-04409-9
|
50 |
DENG K, CHEN Q, LI L. Modification engineering in SnO2 electron transport layer toward perovskite solar cells: efficiency and stability[J]. 2020, 30(46): 2004209.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|