Please wait a minute...
浙江大学学报(工学版)  2021, Vol. 55 Issue (8): 1585-1593    DOI: 10.3785/j.issn.1008-973X.2021.08.020
电气工程     
基于LCL谐振型双有源桥的三端口DC-DC变换器及其解耦控制
王荣闯(),王杉杉,高明,石健将*()
浙江大学 电气工程学院,浙江 杭州 310027
Three-port DC-DC converter based on LCL resonant dual active bridge and its decoupling control
Rong-chuang WANG(),Shan-shan WANG,Ming GAO,Jian-jiang SHI*()
College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China
 全文: PDF(1614 KB)   HTML
摘要:

为了降低集成式三端口DC-DC变换器多功率路径的控制环路间的耦合程度、优化动态性能,将双Buck/Boost与LCL谐振型双有源桥通过共用原边全桥开关单元集成到一起,提出新型三端口DC-DC变换器及其解耦控制方法. 该变换器实现了开关器件的复用,提高了功率密度;采用PWM+双移相控制,可以实现3个端口间传输功率的灵活控制;利用LCL谐振特性实现基波功率因数为1的功率传递. 本研究分析该变换器的工作原理、控制方式与谐波特性,并且根据基波分析法提出简单、有效的解耦控制方法,可以有效降低多功率路径间的耦合程度,提高系统动态响应能力;搭建400 W的实验样机,进行控制方式对比试验、典型工作模式切换试验、解耦控制对比试验,验证该变换器的可行性及所提解耦控制策略的解耦效果.

关键词: 三端口DC-DC变换器LCL谐振型双有源桥双Buck/BoostPWM+双移相解耦控制    
Abstract:

A new three-port DC-DC converter and its decoupling control method were proposed, in order to reduce the coupling degree of different control loops of multiple power paths and optimize the dynamic performance of the integrated three-port DC-DC converter. Dual Buck/Boost and LCL resonant dual active bridge were combined by reusing primary switching units. Switch devices were reused in the converters and power density was improved. Power transmission between three ports was controlled flexibly by PWM and dual phase-shift control mode. Power was transfered with fundamental power factor of 1 based on LCL resonant characteristics. The working principle, control mode and harmonic performance of the converter were analyzed. A simple and effective decoupling control method was proposed according to the fundamental analysis method, which can effectively reduce the coupling degree of different control loops of multiple power paths and improve the dynamic response ability of the system. Finally, a 400 W experimental prototype was built. Control mode comparison test, typical working mode switching test and decoupling control comparison test were carried out to verify the feasibility of the converter and the effect of the decoupling control method.

Key words: three-port DC-DC converter    LCL resonant dual active bridge    dual Buck/Boost    PWM and dual phase-shift    decoupling control
收稿日期: 2020-05-29 出版日期: 2021-09-01
CLC:  TM 46  
基金资助: 装备预研教育部联合基金资助项目(6141A02022528)
通讯作者: 石健将     E-mail: wangrongchuang@zju.edu.cn;jianjiang@zju.edu.cn
作者简介: 王荣闯(1995—),男,硕士生,从事三端口直流变换器研究. orcid.org/0000-0003-3101-562X. E-mail: wangrongchuang@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
王荣闯
王杉杉
高明
石健将

引用本文:

王荣闯,王杉杉,高明,石健将. 基于LCL谐振型双有源桥的三端口DC-DC变换器及其解耦控制[J]. 浙江大学学报(工学版), 2021, 55(8): 1585-1593.

Rong-chuang WANG,Shan-shan WANG,Ming GAO,Jian-jiang SHI. Three-port DC-DC converter based on LCL resonant dual active bridge and its decoupling control. Journal of ZheJiang University (Engineering Science), 2021, 55(8): 1585-1593.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2021.08.020        https://www.zjujournals.com/eng/CN/Y2021/V55/I8/1585

图 1  TPC拓扑结构
图 2  等效二端口网络
图 3  变换器主要工作波形
图 4  变换器典型控制结构
图 5  原边电流谐波含量
图 6  副边电流谐波含量
图 7  谐波功率传输占比
图 8  解耦控制结构
参数 取值
开关频率 ${f_{\rm{s}}}$/kHz 25
变压器匝比1∶n 1∶3
端口1输入电压 ${{U}_1}$/V 50
端口2输入电压 ${{U}_2}$/V 17.5~32.5
端口3输出电压 ${{U}_3}$/V 150
谐振电感 ${L_{\rm{r}}}$/μH 21.5
谐振电容 ${C_{\rm{r}}}$/μF 1.88
特征阻抗 ${Z_0}$ 3.38
滤波电感 ${L_{{\rm{b}}1}}$${L_{{\rm{b2}}}}$/μH 250
滤波电容 ${C_{{\rm{port}}1}}$${C_{{\rm{port}}2}}$${C_{{\rm{port}}3}}$/μF 1000
表 1  样机主要设计参数
图 9  单、双移相控制方式对比
图 10  SIDO、DISO、SISO模式切换
图 11  不同工况下的谐振腔波形
图 12  不同工况及控制方式下解耦控制效果对比
1 LI S, ZHOU W, WANG X The development status and key technologies of solar powered unmanned air vehicle[J]. IOP Conference Series: Materials Science and Engineering, 2017, 187 (1): 12011
2 李莹. 基于光伏-混合储能的直流微网运行控制研究[D]. 济南: 山东大学, 2015.
LI Ying. Research on operational control of DC micro-grid based on photovoltaic generation and hybrid energy storage[D]. Jinan: Shandong University, 2015.
3 张彬. 小功率光伏发电系统MPPT及并网逆变器控制方法研究[D]. 株洲: 湖南工业大学, 2015.
ZHANG Bin. Research on control method of MPPT and the grid-connected inverner in small power photovoltaic power generation system[D]. Zhuzhou: Hunan University of Technology, 2015.
4 易芳. 局部阴影条件下光伏系统MPPT控制研究[D]. 秦皇岛: 燕山大学, 2013.
YI Fang. Maxmum power point tracking of PV system under partially shaded condition[D]. Qinhuangdao: Yanshan University, 2013.
5 HARRAG A, MESSALTI S, DAILI Y. Innovative single sensor neural network PV MPPT[C]// 2019 6th International Conference on Control, Decision and Information Technologies (CoDIT). Paris: [s.n.], 2019.
6 MORALES-CAPORAL M, RANGEL-MAGDALENO J, MORALES-CAPORAL R. Digital simulation of a predictive current control for photovoltaic system based on the MPPT strategy[C]// 2016 13th International Conference on Power Electronics (CIEP). Guanajuato: [s.n.], 2016.
7 HAQUE M M, WOLFS P, ALAHAKOON S. Small signal modeling and control of isolated three port DC-DC converter for PV-battery system[C]// 2017 IEEE Region 10 Humanitarian Technology Conference (R10-HTC). Dhaka: [s.n.], 2017.
8 SUN X, SHEN Y, LI W, et al A PWM and PFM hybrid modulated three-port converter for a standalone PV/battery power system[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2015, 3 (4): 984- 1000
doi: 10.1109/JESTPE.2015.2424718
9 AN L, LU D D Design of a single-switch DC/DC converter for a PV-battery-powered pump system with PFM+PWM control[J]. IEEE Transactions on Industrial Electronic, 2015, 62 (2): 910- 921
doi: 10.1109/TIE.2014.2359414
10 AFXENTIS S, FLORIDES M, MACHAMINT V, et al Energy class dependent residential battery storage sizing for PV systems in Cyprus[J]. The Journal of Engineering, 2019, 18: 4770- 4774
11 孙孝峰, 申彦峰, 李午英, 等 交错并联双向Buck/Boost集成LLC谐振型三端口直流变换器[J]. 电工技术学报, 2016, 31 (14): 165- 175
SUN Xiao-feng, SHEN Yan-feng, LI Wu-ying, et al Interleaving bidirectional Buck/Boost and LLC integrated three-port DC-DC converter[J]. Electrical Engineering Magazine, 2016, 31 (14): 165- 175
doi: 10.3969/j.issn.1000-6753.2016.14.019
12 刘福鑫, 阮洁, 阮新波 一种多端口直流变换器的系统生成方法——采用单极性脉冲电源单元[J]. 中国电机工程学报, 2012, 32 (6): 72- 80
LIU Fu-xin, RUAN Jie, RUAN Xin-bo A system approach to synthesize multi-port DC converters: adopting unipolar pulsating source cells[J]. Proceedings of the Chinese Society for Electrical Engineering, 2012, 32 (6): 72- 80
13 吴红飞. 基于功率流分析与重构的直流变换器拓扑衍生理论和方法[D]. 南京: 南京航空航天大学, 2012.
WU Hong-fei. Topology derivation theory and method for DC-DC converters via power flow analysis and rebuilding[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2012.
14 储凯. 三端口隔离型双向直流/直流变换器的设计与控制[D]. 南京: 东南大学, 2015.
CHU Kai. Design and control of three-port bidirectional DC/DC converter[D]. Nanjing: Southeast University, 2015.
15 杨旭. 光储发电系统三端口DC/DC变换器硬解耦与控制方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2016.
YANG Xu. Research on hardware-decoupling and control method of three-port DC/DC converter for PV-storage generation system[D]. Harbin: Harbin Institute of Technology, 2016.
16 孙孝峰, 刘飞龙, 熊亮亮, 等 双Buck/Boost集成双有源桥三端口DC-DC变换器[J]. 电工技术学报, 2016, 31 (22): 73- 82
SUN Xiao-feng, LIU Fei-long, XIONG Liang-liang, et al Dual Buck/Boost integrated dual active bridge three port DC-DC converter[J]. Electrical Engineering Magazine, 2016, 31 (22): 73- 82
doi: 10.3969/j.issn.1000-6753.2016.22.010
[1] 解五一,高霄,何思宇,肖晓晖. 面向复合材料自动铺放设备的输带速度与张力协同解耦控制[J]. 浙江大学学报(工学版), 2019, 53(3): 455-462.
[2] 赵皓宇, 祝长生. 电磁轴承刚性转子系统前馈解耦控制[J]. 浙江大学学报(工学版), 2018, 52(9): 1777-1787.
[3] 李奇安, 金鑫. 对角CARIMA模型多变量广义预测近似解耦控制[J]. J4, 2013, 47(10): 1764-1769.