化学工程 |
|
|
|
|
火炸药光固化3D打印成型 |
谭博军( ),陈斌,刘亚静,汪伟,李子森,汪营磊( ),肖川 |
1. 西安近代化学研究所,陕西 西安 710065 2. 中国兵器工业新技术推广研究所,北京 100089 3. 中国兵器科学研究院,北京 100089 |
|
Photocurable 3D printing molding of propellants and explosives |
Bo-jun TAN( ),Bin CHEN,Ya-jing LIU,Wei WANG,Zi-sen LI,Ying-lei WANG( ),Chuan XIAO |
1. Xi’an Modern Chemistry Research Institute, Xi’an 710065, China 2. Advanced Technology Generalization Institute of China North Industries Group, Beijing 100089, China 3. Academy of Ordnance Science, Beijing 100089, China |
引用本文:
谭博军,陈斌,刘亚静,汪伟,李子森,汪营磊,肖川. 火炸药光固化3D打印成型[J]. 浙江大学学报(工学版), 2021, 55(8): 1594-1606.
Bo-jun TAN,Bin CHEN,Ya-jing LIU,Wei WANG,Zi-sen LI,Ying-lei WANG,Chuan XIAO. Photocurable 3D printing molding of propellants and explosives. Journal of ZheJiang University (Engineering Science), 2021, 55(8): 1594-1606.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2021.08.021
或
https://www.zjujournals.com/eng/CN/Y2021/V55/I8/1594
|
1 |
崔庆忠, 刘德润, 徐军培. 高能炸药与装药设计[M]. 北京: 国防工业出版社, 2016.
|
2 |
朱珠, 雷林, 罗向东, 等 含能材料3D打印技术及应用现状研究[J]. 兵工自动化, 2015, 34 (6): 52- 55 ZHU Zhu, LEI Lin, LUO Xiang-dong, et al Research on application of 3D printing technology of energetic materials[J]. Ordnance Industry Automation, 2015, 34 (6): 52- 55
|
3 |
丁骁垚, 樊黎霞, 陆星宇 含能材料3D打印机喷嘴参数对挤出速度的影响[J]. 机械设计与制造, 2018, 6: 74- 77 DING Xiao-yao, FAN Li-xia, LU Xing-yu Parameter analysis in extrusion rate of energetic material 3D printer’s nozzle flow[J]. Machinery Design and Manufacture, 2018, 6: 74- 77
doi: 10.3969/j.issn.1001-3997.2018.06.020
|
4 |
KUO S M, YANG C C, SHIEA J, et al A post-bonding-free fabrication of integrated microfluidic devices for mass spectrometry applications[J]. Sensors and Actuators B: Chemical, 2011, 156 (1): 156- 161
doi: 10.1016/j.snb.2011.04.004
|
5 |
刘志伟, 张海鹰 面向增材制造的快速建模若干关键技术的探讨[J]. 现代制造技术与装备, 2015, (2): 20- 21 LIU Zhi-wei, ZHANG Hai-ying Discussion of key technologies of rapid modeling of additive manufacturing[J]. Modern Manufacturing Technology and Equipment, 2015, (2): 20- 21
|
6 |
YAZDANI S H, AKBARZADEH A H, NIKNAM H, et al 3D printed architected polymeric sandwich panels: energy absorption and structural performance[J]. Composite Structures, 2018, 200: 886- 909
doi: 10.1016/j.compstruct.2018.04.002
|
7 |
KELLY B E, BHATTACHARYA I, HEIDARI H, et al Volumetric additive manufacturing via tomographic reconstruction[J]. Science, 2019, 363 (6431): 1075- 1079
doi: 10.1126/science.aau7114
|
8 |
VELU R, VAHEED N, RAMACHANDRAN M K, et al Experimental investigation of robotic 3D printing of high-performance thermoplastics (PEEK): a critical perspective to support automated fibre placement process[J]. The International Journal of Advanced Manufacturing Technology, 2020, 108: 1007- 1025
doi: 10.1007/s00170-019-04623-z
|
9 |
MA J Environmentally sustainable management of 3D printing network: decision support for 3D printing work allocation[J]. International Journal of Precision Engineering and Manufacturing, 2020, 21: 537- 544
doi: 10.1007/s12541-019-00280-0
|
10 |
WANG X, TIAN X Y, LIAN Q, et al Fiber traction printing: a 3D printing method of continuous fiber reinforced metal matrix composite[J]. Chinese Journal of Mechanical Engineering, 2020, 33: 31- 42
doi: 10.1186/s10033-020-00447-1
|
11 |
彭翠枝 含能材料增材制造技术—新兴的精密高效安全制备技术[J]. 含能材料, 2019, 27 (6): 445- 447 PENG Cui-zhi Additive manufacturing technology for energetic materials-emerging precision, efficient and safe manufacturing technology[J]. Chinese Journal of Energetic Materials, 2019, 27 (6): 445- 447
doi: 10.11943/CJEM2019065
|
12 |
ACOSTA-VÉLEZ G F, LINSLEY C S, CRAIG M C, et al Photocurable bioink for the inkjet 3D pharming of hydrophilic drugs[J]. Bioengineering, 2017, 4: 11- 22
doi: 10.3390/bioengineering4010011
|
13 |
LOUZAO I, KOCH B, TARESCO V, et al Identification of novel “Inks” for 3D printing using high-throughput screening: bioresorbable photocurable polymers for controlled drug delivery[J]. ACS Applied Materials and Interfaces, 2018, 10 (8): 6841- 6848
doi: 10.1021/acsami.7b15677
|
14 |
TAORMINA G, SCIANCALEPORE C, MESSORI M, et al 3D printing processes for photocurable polymeric materials: technologies, materials, and future trends[J]. Journal of Applied Biomaterials and Functional Materials, 2018, 16 (3): 151- 160
doi: 10.1177/2280800018764770
|
15 |
BAGHERI A, ENGEL K E, BAINBRIDGE C W, et al 3D printing of polymeric materials based on photo-RAFT polymerization[J]. Polymer Chemistry, 2020, 11: 641- 647
doi: 10.1039/C9PY01419E
|
16 |
LEE J S, PARK H S, JUNG H, et al 3D-printable photocurable bioink for cartilage regeneration of tonsil-derived mesenchymal stem cells[J]. Additive Manufacturing, 2020, 33: 101136- 101149
doi: 10.1016/j.addma.2020.101136
|
17 |
赵光华, 刘志涛, 李耀棠 光固化3D打印: 原理、技术、应用及新进展[J]. 机电工程技术, 2020, 49 (8): 1- 6 ZHAO Guang-hua, LIU Zhi-tao, LI Yao-tang Stereolithography: principle, technologies, applications and novel developments[J]. Mechanical and Electrical Engineering Technology, 2020, 49 (8): 1- 6
doi: 10.3969/j.issn.1009-9492.2020.08.001
|
18 |
TESAVIBUL P, FELZMANN R, GRUBER S, et al Processing of 45S5 bioglass® by lithography-based additive manufacturing[J]. Materials Letters, 2012, 74: 81- 84
doi: 10.1016/j.matlet.2012.01.019
|
19 |
STASSI S, FANTINO E, CALMO R, et al Polymeric 3D printed functional microcantilevers for biosensing applications[J]. ACS Applied Materials and Interfaces, 2017, 9: 19193- 19201
doi: 10.1021/acsami.7b04030
|
20 |
刘红波, 林峰, 徐玲 UV固化丙烯酸双酯液晶的合成与性能[J]. 现代涂料与涂装, 2008, 11 (9): 38- 41 LIU Hong-bo, LIN Feng, XU Ling Synthesis and characterization of UV-curable liquid crystal diacrylates[J]. Modern Paint and Finishing, 2008, 11 (9): 38- 41
doi: 10.3969/j.issn.1007-9548.2008.09.012
|
21 |
BERTANA V, SCORDO G, PARMEGGIANI M, et al Rapid prototyping of 3D organic electrochemical transistors by composite photocurable resin[J]. Scientific Reports, 2020, 10: 13335- 13347
doi: 10.1038/s41598-020-70365-8
|
22 |
李东方, 陈继民, 袁艳萍, 等 光固化快速成型技术的进展及应用[J]. 北京工业大学学报, 2015, 41 (12): 1769- 1774 LI Dong-fang, CHEN Ji-min, YUAN Yan-ping, et al Development and application of stereo lithography apparatus[J]. Journal of Beijing University of Technology, 2015, 41 (12): 1769- 1774
doi: 10.11936/bjutxb2015070084
|
23 |
吴懋亮, 诸文俊, 李涤尘, 等 光固化成型中的变形分析[J]. 西安交通大学学报, 1999, 33 (9): 90- 93 WU Mao-liang, ZHU Wen-jun, LI Di-chen, et al Analysis of care deformation in stereolithography[J]. Journal of Xi’an Jiaotong University, 1999, 33 (9): 90- 93
doi: 10.3321/j.issn:0253-987X.1999.09.022
|
24 |
ZHAO Z, WU J T, MU X M, et al Desolvation induced origami of photocurable polymers by digit light processing[J]. Macromolecular Rapid Communications, 2017, 38: 1600625
doi: 10.1002/marc.201600625
|
25 |
TUMBLESTON J R, SHIRVANYANTS D, ERMOSHKIN N, et al Continuous liquid interface production of 3D objects[J]. Science, 2015, 347 (6228): 1349- 1352
doi: 10.1126/science.aaa2397
|
26 |
戴京涛, 赵培仲, 魏华凯, 等 光固化复合材料的研究进展[J]. 化工新型材料, 2016, 44 (3): 15- 16 DAI Jing-tao, ZHAO Pei-zhong, WEI Hua-kai, et al Research progress of UV curable composite materials[J]. New Chemical Materials, 2016, 44 (3): 15- 16
|
27 |
HUANG B, HUA R, XUE Z H, et al Continuous liquid interface production of alginate/polyacrylamide hydrogels with supramolecular shape memory properties[J]. Carbohydrate Polymers, 2020, 231: 115736- 115744
doi: 10.1016/j.carbpol.2019.115736
|
28 |
CAUDILL C, PERRY J, TIAN S, et al Spatially controlled coating of continuous liquid interface production microneedles for transdermal protein delivery[J]. Journal of Controlled Release, 2018, 284: 122- 132
doi: 10.1016/j.jconrel.2018.05.042
|
29 |
PROVCHY Z, PALAZOTTO A, FLATER P. Additively manufactured perforators[C]// 58th AIAA/ASCE/ASC Structures, Structural Dynamics, and Materials Conference. Long Beach: AIAA, 2017: 1303.
|
30 |
Department of Defence. Rapid development of weapon payloads via additive manufacturing: DTRAI6A-001[R]. Montreal: Concordia University, 2016.
|
31 |
JACKSON B. Australian researchers launch explosive $2 million 3D printer materials partnership [EB/OL]. (2018-03-05) [2019-04-26]. http://3Dprintingindustry.com/news/.2018.3.
|
32 |
郑斌, 沈卫, 陈永新, 等. 世界火炸药技术发展报告[M]. 北京: 中国兵器第二一〇研究所, 2019: 215.
|
33 |
张金勇. 异形结构传爆药装药工艺研究[D]. 太原: 中北大学, 2006. ZHANG Jin-yong. Study on irregular booster pellet charge process[D]. Taiyuan: North University of China, 2006.
|
34 |
VAN D C, STRAATHOF M, VAN L J. Developments in additive manufacturing of energetic materials at TNO[C]// 30th International Symposium on Ballistics. Long Beach: DEStech, 2017: 862-875.
|
35 |
JOOST V L, CHRIS V D, ARJAN D O. 3D printing of gun propellants[C]// Proceedings of the 43rd International Pyrotechnics Society Seminar. Colorado: Fort Collins, 2018: 129-141.
|
36 |
胡睿, 杨伟涛, 姜再兴, 等 一种基于光聚合固化成型发射药3D打印方法[J]. 火炸药学报, 2020, 43 (4): 368- 371 HU Rui, YANG Wei-tao, JIANG Zai-xing, et al 3D printing method gun propellants based on vat photopolymerization[J]. Chinese Journal of Energetic Materials, 2020, 43 (4): 368- 371
|
37 |
YANG Wei-tao, HU Rui, ZHENG Lin, et al Fabrication and investigation of 3D-printed gun propellants[J]. Materials and Design, 2020, 192: 108761- 18769
doi: 10.1016/j.matdes.2020.108761
|
38 |
胡睿, 杨伟涛 含能光固化3D打印发射药技术取得突破[J]. 火炸药学报, 2020, 43 (5): 465- 476 HU Rui, YANG Wei-tao A breakthrough has been made in the technology of energetic photocurable 3D printing propellant[J]. Chinese Journal of Energetic Materials, 2020, 43 (5): 465- 476
doi: 10.14077/j.issn.
|
39 |
QUINTANILLA A L. Fundamentals of particulate-filled polymer composite fabrication via continuous liquid interface production (CLIP)[D]. Raleigh: North Carolina State University, 2017.
|
40 |
张亮, 刘晶, 张哲, 等 增材制造技术以及在火炸药研究中的现状与发展[J]. 爆破器材, 2016, 45 (4): 1- 8 ZHANG Liang, LIU Jing, ZHANG Zhe, et al Additive manufacture technology and its research status and development in propellant and explosive industry[J]. Explosive Materials, 2016, 45 (4): 1- 8
doi: 10.3969/j.issn.1001-8352.2016.04.001
|
41 |
徐林峰. 均匀液滴喷射微制造技术基础研究[D]. 西安: 西北工业大学, 2005. XU Lin-feng. Foundational research on uniform droplets spraying micro-fabrication technology[D]. Xi ’an: Northwestern Polytechnical University, 2005.
|
42 |
MCCLAIN M S, GUNDUZ I E, SON S F Additive manufacturing of ammonium perchlorate composite propellant with high solids loadings[J]. Proceedings of the Combustion Institute, 2019, 37 (3): 3135- 3142
doi: 10.1016/j.proci.2018.05.052
|
43 |
STRAATHOF M H, VAN DRIEL C, LINGEN J N, et al Development of propellant compositions for vat photopolymerization additive manufacturing[J]. Propellants Explosives, Pyrotechnics, 2020, 45: 36- 52
doi: 10.1002/prep.201900176
|
44 |
VAN DRIEL C, KOBES J, BROEKHUIS R. Characterisation of porous single base propellant[C]// 34th International Annual Conference of ICT. Karlsruhe: Elsevier, 2003: 24-27.
|
45 |
ZUNINO J, SCHMIDT D Inkjet printed devices for armament applications[J]. Nanotechnology, 2010, 2: 542- 545
|
46 |
许迪. 化学芯片的快速成型技术研究[D]. 南京: 南京理工大学, 2003. XU Di. The research of rapid prototyping technology of chemical chip[D]. Nanjing: Nanjing University of Science and Technology, 2003.
|
47 |
朱锦珍. 含能芯片的快速成型技术研究[D]. 南京: 南京理工大学, 2005. ZHU Jin-zhen. The research of rapid prototyping technology of energetic chip[D]. Nanjing: Nanjing University of Science and Technology, 2005.
|
48 |
王建. 化学芯片的喷墨快速成型技术研究[D]. 南京: 南京理工大学, 2006. WANG Jian. The research of inject rapid prototyping technology of chemical chip[D]. Nanjing: Nanjing University of Science and Technology, 2006.
|
49 |
邢宗仁. 含能材料三维打印快速成形技术研究[D]. 南京: 南京理工大学, 2012. XING Zong-ren. Research of three-dimensional printing for energetic materials[D]. Nanjing: Nanjing University of Science and Technology, 2012.
|
50 |
王景龙. 3DP炸药油墨配方设计及制备技术[D]. 太原: 中北大学, 2015. WANG Jing-long. 3DP explosive ink formulation and preparation technology[D]. Taiyuan: North University of China, 2015.
|
51 |
姚艺龙, 吴立志, 唐乐, 等 纳米CL-20炸药含能墨水的直写规律[J]. 火炸药学报, 2016, 39 (1): 39- 41 YAO Yi-long, WU Li-zhi, TANG Le, et al Direct writing rule of nano of CL-20 explosive energetic ink[J]. Chinese Journal of Explosives and Propellans, 2016, 39 (1): 39- 41
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|