Please wait a minute...
浙江大学学报(工学版)  2021, Vol. 55 Issue (6): 1168-1174    DOI: 10.3785/j.issn.1008-973X.2021.06.018
1. 浙江大学 工业生态与环境研究所,浙江 杭州 310027
2. 浙江大学 医学院附属第一医院,浙江 杭州 310007
Experimental study on melanoma cell ablation by high-voltage nanosecond pulsed electric field
Zhen-hong MA1(),Zhen LIU1,*(),Sheng-yong YIN2,Rong-wei MA1,Ke-ping YAN1
1. Institute of Industrial Ecology and Environment, Zhejiang University, Hangzhou 310027, China
2. The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310007, China
 全文: PDF(1508 KB)   HTML

为了研究高压纳秒脉冲电场(nsPEF)消融恶性肿瘤的关键影响参数,基于火花开关和传输线变压器(TLT)技术,自主研制重频高压纳秒脉冲电场(RnsPEF)发生系统,可以稳定输出纳秒级脉宽的指数脉冲,证实了高压纳秒脉冲电场杀伤肿瘤细胞的效果和可控性. 以贴壁生长于六孔板中B16黑色素瘤细胞为对象,研究脉冲次数、峰值电压、重复频率和电极针对间距对肿瘤细胞消融效果的影响. 以电极杯中B16肿瘤细胞悬液为研究对象,结合CCK-8检测法开展脉冲处理后细胞活性的研究. 结果发现,高压脉冲电场和脉冲能量注入密度是影响纳秒脉冲电场消融肿瘤细胞的关键因素,重复频率对消融效果的影响不大. 结果显示,自制RnsPEF系统消融B16肿瘤细胞的阈值电场强度为6.8 kV/cm,注入能量密度的阈值为11.4 J/cm3和最佳消融次数为500次脉冲.

关键词: 纳秒脉冲电场(nsPEF)指数脉冲火花开关传输线变压器(TLT)B16肿瘤细胞肿瘤消融细胞活性    

A repetitive high-voltage nanosecond pulsed electric field (RnsPEF) generation system was independently developed based on the spark switch and transmission line transformer (TLT) technology in order to analyze the key impact parameters of the process of malignant tumors ablation by high-voltage nanosecond pulsed electric field (nsPEF). The system can stably generate nanosecond exponential pulse. The experimental results proved the effectivity and controllability of RnsPEF on tumor cells ablation. B16 melanoma cells adherently seeded in six-well plates as the research object to analyze the effects of pulse number, peak voltage, repetition frequency and electrode spacing on tumor cells ablation. Cell counting kit-8 (CCK-8) was applied to measure cell viability of B16 tumor cells suspension in the cuvette after treated by pulses. The experimental results show that the pulsed electric field intensity and injected energy density of the applied RnsPEF play the key roles in determining the ablation effect. The repetition frequency hardly affects the ablation results. The pulsed electric field intensity threshold of RnsPEF ablating B16 melanoma cells is 6.8 kV/cm, and the injected energy density threshold is 11.4 J/cm3, as well as the optimal pulse number is 500 pulses.

Key words: nanosecond pulsed electric field (nsPEF)    exponential pulse    spark switch    transmission line transformer (TLT)    B16 tumor cell    tumor ablation    cell viability
收稿日期: 2020-06-04 出版日期: 2021-07-30
CLC:  R 318  
基金资助: 国家自然科学基金资助项目(81971768);国家科技重大专项资助项目(2018ZX10301201-006-001);中国博士后科学基金资助项目(2018M642437)
通讯作者: 刘振     E-mail:;
作者简介: 马振宏(1994—),男,硕士生,从事脉冲电场生物医学应用的研究. E-mail:
E-mail Alert


马振宏,刘振,殷胜勇,马榕蔚,闫克平. 高压纳秒脉冲电场消融黑色素瘤细胞实验研究[J]. 浙江大学学报(工学版), 2021, 55(6): 1168-1174.

Zhen-hong MA,Zhen LIU,Sheng-yong YIN,Rong-wei MA,Ke-ping YAN. Experimental study on melanoma cell ablation by high-voltage nanosecond pulsed electric field. Journal of ZheJiang University (Engineering Science), 2021, 55(6): 1168-1174.


图 1  B16肿瘤细胞体外消融实验流程图
图 2  RnsPEF发生系统
图 3  火花开关剖面图
图 4  传输线变压器示意图
图 5  用于脉冲处理的电极针对和电极杯
图 6  电压电流波形图
图 7  不同脉冲次数处理后RnsPEF系统的消融效果(重复频率为10 pps、电极针对配置E[0.5,10,10])
图 8  不同脉冲次数处理后RnsPEF系统的消融面积(重复频率为10 pps、电极针对E[0.5,10,10])
图 9  不同峰值电压处理后RnsPEF系统的消融面积(重复频率为10 pps,脉冲次数为500次脉冲,电极针对E[0.5,10,10])
图 10  不同频率处理后的RnsPEF消融效果(峰值电压为26 kV、脉冲次数为500次脉冲、电极针对配置E[1.0,12,10])
图 11  不同间距电极针处理后RnsPEF系统的消融效果(重复频率为10 pps,峰值电压为26 kV,脉冲次数为500次脉冲)
图 12  不同间距电极针处理后的RnsPEF系统消融面积(重复频率为10 pps,峰值电压为26 kV,脉冲次数为500次脉冲)
图 13  脉冲处理后培养液的温度分布(重复频率为10 pps,峰值电压为28 kV,脉冲次数为800次脉冲)
图 14  不同电场强度处理后的B16肿瘤细胞活性(重复频率为10 pps,脉冲次数为500次脉冲)
图 15  不同脉冲次数处理后的B16肿瘤细胞活性(重复频率为10 pps,电场强度为6.8 kV/cm)
1 BRAY F, FERLAY J, SOERJOMATARAM I, et al Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA: A Cancer Journal for Clinicians, 2018, 68 (6): 394- 424
doi: 10.3322/caac.21492
2 WEAVER J C Electroporation of cells and tissues[J]. IEEE Transactions on Plasma Science, 2000, 28 (1): 24- 33
doi: 10.1109/27.842820
3 RUBINSKY B Irreversible electroporation in medicine[J]. Technology in Cancer Research and Treatment, 2016, 6 (4): 255- 260
4 ESSER A, SMITH K, GOWRISHANKAR T, et al Towards solid tumor treatment by irreversible electroporation: intrinsic redistribution of fields and currents in tissue[J]. Technology in Cancer Research and Treatment, 2007, 6 (4): 261- 274
doi: 10.1177/153303460700600402
5 MIKLAVCIC D, SERSA G, BRECELJ E, et al Electrochemotherapy: technological advancements for efficient electroporation-based treatment of internal tumors[J]. Medical and Biological Engineering and Computing, 2012, 50 (12): 1213- 1225
doi: 10.1007/s11517-012-0991-8
6 HABERL S, MIKLAVCIC D, SERSA G, et al Cell membrane electroporation-Part 2: the applications[J]. IEEE Electrical Insulation Magazine, 2013, 29 (1): 29- 37
doi: 10.1109/MEI.2013.6410537
7 ZAGER Y, KAIN D, LANDA N, et al Optimization of irreversible electroporation protocols for in-vivo myocardial decellularization[J]. Plos One, 2016, 11 (11): e0165475
doi: 10.1371/journal.pone.0165475
8 VROOMEN L G P H, PETRE E N, CORNELIS F H, et al Irreversible electroporation and thermal ablation of tumors in the liver, lung, kidney and bone: what are the differences?[J]. Diagnostic and Interventional Imaging, 2017, 98 (9): 609- 617
doi: 10.1016/j.diii.2017.07.007
9 SILK M T, WIMMER T, LEE K S, et al Percutaneous ablation of peribiliary tumors with irreversible electroporation[J]. Journal of Vascular and Interventional Radiology, 2014, 25 (1): 112- 118
doi: 10.1016/j.jvir.2013.10.012
10 MARTIN R C G, KWON D, CHALIKONDA S, et al Treatment of 200 locally advanced (stage Ⅲ) pancreatic adenocarcinoma patients with irreversible electroporation[J]. Annals of Surgery, 2015, 262 (3): 486- 494
doi: 10.1097/SLA.0000000000001441
11 GIRELLI R, FRIGERIO I, GIARDINO A Results of 100 pancreatic radiofrequency ablations in the context of a multimodal strategy for stage III ductal adenocarcinoma[J]. Langenbecks Archives of Surgery, 2013, 398 (1): 63- 69
doi: 10.1007/s00423-012-1011-z
12 MARTIN R C G, MCFARLAND K, ELLIS S, et al Irreversible electroporation in locally advanced pancreatic cancer: potential improved overall survival[J]. Annals of Surgical Oncology, 2013, 20: 443- 449
doi: 10.1245/s10434-012-2736-1
13 SIDDIQUI I A, KIRKS R C, LATOUCHE E L, et al High-frequency irreversible electroporation[J]. Surgical Innovation, 2017, 24 (3): 276- 283
doi: 10.1177/1553350617692202
14 WANG Y B, YIN S Y, ZHOU Y, et al Dual-function of baicalin in nsPEFs-treated hepatocytes and hepatocellular carcinoma cells for different death pathway and mitochondrial response[J]. International Journal of Medical Sciences, 2019, 16 (9): 1271- 1282
doi: 10.7150/ijms.34876
15 YIN S Y, CHEN X H, ZHANG X M, et al Nanosecond pulsed electric field (nsPEF) treatment for hepatocellular carcinoma: a novel locoregional ablation decreasing lung metastasis[J]. Cancer Letters, 2014, 346 (2): 285- 291
doi: 10.1016/j.canlet.2014.01.009
16 KLEIN N, GUNTHER E, MIKUS P, et al Single exponential decay waveform; a synergistic combination of electroporation and electrolysis (E2) for tissue ablation[J]. PeerJ, 2017, 5 (5): 96- 106
17 ZHANG Y, LYU C, LIU Y, et al Molecular and histological study on the effects of non-thermal irreversible electroporation on the liver[J]. Biochemical and Biophysical Research Communications, 2018, 500 (3): 665- 670
doi: 10.1016/j.bbrc.2018.04.132
18 YIN S Y, LIU Z, SHAHRIAR M A, et al Ultrastructural changes in hepatocellular carcinoma cells induced by exponential pulses of nanosecond duration delivered via a transmission line[J]. Bioelectrochemistry, 2020, 135: 107548
doi: 10.1016/j.bioelechem.2020.107548
19 CHANG D C, REESE T S, CHANG D C, et al Changes in membrane-structure induced by electroporation as revealed by rapid-freezing electron-microscopy[J]. Biophysical Journal, 1990, 58 (1): 1- 12
doi: 10.1016/S0006-3495(90)82348-1
20 CHEN W, LEE R C Altered ion channel conductance and ionic selectivity induced by large imposed membrane potential pulse[J]. Biophysical Journal, 1994, 67 (2): 603- 612
doi: 10.1016/S0006-3495(94)80520-X
21 姚陈果, 孙才新, 米彦, et al 陡脉冲不可逆性电击穿治疗肿瘤的研究[J]. 高电压技术, 2007, 33 (2): 7- 13
YAO Chen-guo, SUN Cai-xin, MI Yan, et al Study on the treatment of tumor by steep pulse irreversible electrical breakdown[J]. High Voltage Technology, 2007, 33 (2): 7- 13
doi: 10.3969/j.issn.1003-6520.2007.02.002
[1] 刘清清,周志勇,范国华,钱旭升,胡冀苏,陈光强,戴亚康. 基于3D scSE-UNet的肝脏CT图像半监督学习分割方法[J]. 浙江大学学报(工学版), 2021, 55(11): 2033-2044.
[2] 熊慧,景昭,刘近贞. 新型经颅磁刺激三层-8字形线圈的结构设计[J]. 浙江大学学报(工学版), 2021, 55(4): 793-800.
[3] 黄毅鹏,胡冀苏,钱旭升,周志勇,赵文露,马麒,沈钧康,戴亚康. SE-Mask-RCNN:多参数MRI前列腺癌分割方法[J]. 浙江大学学报(工学版), 2021, 55(1): 203-212.
[4] 童基均,柏雁捷,潘剑威,杨佳锋,蒋路茸. 基于变分模态分解的心冲击信号和呼吸信号分离[J]. 浙江大学学报(工学版), 2020, 54(10): 2058-2066.
[5] 洪炎佳,孟铁豹,黎浩江,刘立志,李立,徐硕瑀,郭圣文. 多模态多维信息融合的鼻咽癌MR图像肿瘤深度分割方法[J]. 浙江大学学报(工学版), 2020, 54(3): 566-573.
[6] 杨熠,钱旭升,周志勇,朱建兵,沈钧康,戴亚康. 采用影像组学的肾肿瘤组织学亚型分类[J]. 浙江大学学报(工学版), 2019, 53(12): 2381-2388.
[7] 吴谦,王平. 肺癌呼吸标志物筛选及其生物信息学分析[J]. 浙江大学学报(工学版), 2019, 53(12): 2389-2395.
[8] 杨婧,耿辰,王海林,纪建松,戴亚康. 基于DenseNet的低分辨CT影像肺腺癌组织学亚型分类[J]. 浙江大学学报(工学版), 2019, 53(6): 1164-1170.
[9] 贺永,高庆,刘安,孙苗,傅建中. 生物3D打印——从形似到神似[J]. 浙江大学学报(工学版), 2019, 53(3): 407-419.
[10] 王琴, 方佳如, 曹端喜, 周洁, 苏凯麒, 黎洪波, 王平. 心肌细胞传感器优化设计及其药物分析[J]. 浙江大学学报(工学版), 2016, 50(6): 1214-1220.
[11] 王琴, 方佳如, 曹端喜, 周洁, 苏凯麒, 黎洪波, 王平. 心肌细胞传感器优化设计及其药物分析[J]. 浙江大学学报(工学版), 2015, 49(12): 2432-2438.
[12] 陈婧, 许敏芬, 王立强, 袁波, 段会龙, 唐佳. 用于FICE图像增强效果的客观评价方法[J]. 浙江大学学报(工学版), 2015, 49(10): 2013-2017.
[13] 郑翔,张寅升,黄震震,贾峥,段会龙,赵饮虹,李昊旻. 可扩展的临床决策支持应用集成架构[J]. 浙江大学学报(工学版), 2015, 49(9): 1658-1664.
[14] 何为, 夏灵. 基于掩码的区域增长相位解缠方法[J]. 浙江大学学报(工学版), 2015, 49(4): 792-797.
[15] 周聪聪, 涂春龙, 高云, 王飞翔, 何成, 龚红伟,连平, 叶学松. 腕戴式低功耗无线心率监测装置的研制[J]. 浙江大学学报(工学版), 2015, 49(4): 798-806.