Please wait a minute...
浙江大学学报(工学版)  2025, Vol. 59 Issue (9): 1954-1963    DOI: 10.3785/j.issn.1008-973X.2025.09.019
机械工程     
考虑驾驶意图的人机协同规划和共享控制
李自立1(),周兵1,*(),刘阳毅1,柴天1,干年妃1,2,崔庆佳1
1. 湖南大学 整车先进设计制造技术全国重点实验室,湖南 长沙 410082
2. 泉州湖南大学工业设计与机器智能创新研究院,福建 泉州 362000
Human-machine collaborative planning and shared control considering driving intention
Zili LI1(),Bing ZHOU1,*(),Yangyi LIU1,Tian CHAI1,Nianfei GAN1,2,Qingjia CUI1
1. State Key Laboratory of Advanced Design and Manufacturing Technology for Vehicle, Hunan University, Changsha 410082, China
2. Innovation Institute of Industrial Design and Machine Intelligence of Quanzhou-Hunan University, Quanzhou 362000, China
 全文: PDF(2102 KB)   HTML
摘要:

为了解决自然驾驶人与自动化系统在共驾过程中因目标不一致而引发的人机冲突问题,提出考虑驾驶意图的人机共驾框架. 该框架结合车辆运动学模型与驾驶员转向命令,生成短期预测轨迹以表征驾驶员意图,并利用德洛内三角剖分算法将道路环境离散为空闲单元,采用启发式图搜索算法在线生成期望可行域. 将可行域边界与车辆稳定性约束引入基于模型预测控制的优化问题中,建立以人机控制偏差最小化为目标的共享控制器,从而最大限度地保留驾驶员的操控自由. 仿真结果表明,提出的规划与控制策略不仅有效保证了车辆安全行驶,同时充分考虑了驾驶员的行为意图,有效提高了驾驶员对辅助驾驶系统的接受度. 所提人机共驾框架在算法层面实现了规划与控制的有机耦合,为实现基于驾驶意图的人机高效协同驾驶提供了新思路.

关键词: 人机冲突驾驶意图德洛内三角启发式搜索算法模型预测控制    
Abstract:

A human-machine co-driving framework considering driving intention was proposed to address the human-machine conflicts caused by the goal misalignment between natural drivers and automated systems in human-machine co-driving process. The framework integrated a vehicle kinematic model with the driver’s steering commands to generate short-term predictive trajectories that represented driver intention. The road environment was discretized into free units through the Delaunay triangulation algorithm and a heuristic graph search algorithm was employed to generate the desired feasible regions online. By incorporating feasible region boundaries and vehicle stability constraints into the model predictive control (MPC)-based optimization problem, a shared controller was designed with the objective of minimizing human-machine control deviation, which maximized the driver’s operational freedom. Simulation results demonstrated that the proposed planning and control strategy not only exceled in ensuring driving safety but also fully considered the driver’s behavioral intention, significantly enhancing the driver’s acceptance of the driving assistance systems. The proposed human-machine co-driving framework achieved an integrated coupling of planning and control at the algorithmic level, offering a novel approach for realizing efficient human-machine cooperation based on driving intention.

Key words: human-machine conflict    driving intention    Delaunay triangulation    heuristic search algorithm    model predictive control
收稿日期: 2024-12-31 出版日期: 2025-08-25
CLC:  U 461.1  
基金资助: 国家自然科学基金资助项目(52202466);福建省自然科学基金资助项目(2023J01245).
通讯作者: 周兵     E-mail: wHyslee@163.com;zhou_bingo@163.com
作者简介: 李自立(1997—),男,硕士生,从事汽车系统动力学及控制研究. orcid.org/0009-0007-7802-1951.E-mail:wHyslee@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
李自立
周兵
刘阳毅
柴天
干年妃
崔庆佳

引用本文:

李自立,周兵,刘阳毅,柴天,干年妃,崔庆佳. 考虑驾驶意图的人机协同规划和共享控制[J]. 浙江大学学报(工学版), 2025, 59(9): 1954-1963.

Zili LI,Bing ZHOU,Yangyi LIU,Tian CHAI,Nianfei GAN,Qingjia CUI. Human-machine collaborative planning and shared control considering driving intention. Journal of ZheJiang University (Engineering Science), 2025, 59(9): 1954-1963.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2025.09.019        https://www.zjujournals.com/eng/CN/Y2025/V59/I9/1954

图 1  考虑驾驶意图的人机共驾框架
图 2  采用单轨迹模型的车辆预测轨迹示意图
图 3  环境识别及离散化
图 4  基于启发式函数的期望可行域搜索
图 5  二自由度车辆动力学模型
图 6  轮胎侧向力模型局部线性化
图 7  结构化道路仿真场景
参数数值参数数值
m/kg1 554NC10
Iz/(kg·m2)2 391NP20
lf/m1.015hs/s0.05
lr/m1.895hl/s0.20
d/m1.916wcf2
表 1  车辆和控制器参数
图 8  左侧绕行避障时车辆行驶轨迹与状态
图 9  可行域验证中不同时刻的可行域结果
图 10  驾驶意图共享控制器介入结果
图 11  控制器验证中不同时刻可行域结果
图 12  轨迹跟踪共享控制器介入结果
图 13  轨迹跟踪共享控制器的权限分配系数
1 李淑庆, 彭囿朗, 肖莉英, 等 道路交通事故发生机理研究现状与趋势分析[J]. 安全与环境学报, 2014, 14 (3): 14- 19
LI Shuqing, PENG Youlang, XIAO Liying, et al Analysis of the mechanism of the road traffic accidents in-situ and the future research trends[J]. Journal of Safety and Environment, 2014, 14 (3): 14- 19
2 高轶男, 巩建强 我国道路交通事故特征及致因分析[J]. 安全与环境学报, 2023, 23 (11): 4013- 4023
GAO Yinan, GONG Jianqiang Characteristics and mechanism of road traffic accidents[J]. Journal of Safety and Environment, 2023, 23 (11): 4013- 4023
3 ROTHFUß S, SCHMIDT R, FLAD M, et al. A concept for human-machine negotiation in advanced driving assistance systems [C]// IEEE International Conference on Systems, Man and Cybernetics. Bari: IEEE, 2019: 3116–3123.
4 ANDERSON S J, KARUMANCHI S B, IAGNEMMA K. Constraint-based planning and control for safe, semi-autonomous operation of vehicles [C]// IEEE Intelligent Vehicles Symposium. Madrid: IEEE, 2012: 383–388.
5 WU Y, WEI H, CHEN X, et al Adaptive authority allocation of human-automation shared control for autonomous vehicle[J]. International Journal of Automotive Technology, 2020, 21 (3): 541- 553
doi: 10.1007/s12239-020-0051-6
6 方浩杰, 董红召, 林少轩, 等 多特征融合的驾驶员疲劳状态检测方法[J]. 浙江大学学报: 工学版, 2023, 57 (7): 1287- 1296
FANG Haojie, DONG Hongzhao, LIN Shaoxuan, et al Driver fatigue state detection method based on multi-feature fusion[J]. Journal of Zhejiang University: Engineering Science, 2023, 57 (7): 1287- 1296
7 孙剑, 张一豪, 王俊骅 基于自然驾驶数据的分心驾驶行为识别方法[J]. 中国公路学报, 2020, 33 (9): 225- 235
SUN Jian, ZHANG Yihao, WANG Junhua Detecting distraction behavior of drivers using naturalistic driving data[J]. China Journal of Highway and Transport, 2020, 33 (9): 225- 235
doi: 10.3969/j.issn.1001-7372.2020.09.022
8 刘志强, 吴雪刚, 倪捷, 等 基于HMM和SVM级联算法的驾驶意图识别[J]. 汽车工程, 2018, 40 (7): 858- 864
LIU Zhiqiang, WU Xuegang, NI Jie, et al Driving intention recognition based on HMM and SVM cascade algorithm[J]. Automotive Engineering, 2018, 40 (7): 858- 864
9 喻恺, 彭理群, 丁雪, 等 面向人机协同共驾的驾驶行为短时预测方法研究[J]. 交通信息与安全, 2019, 37 (1): 42- 48
YU Kai, PENG Liqun, DING Xue, et al A study on the short-time forecasting method of operation behaviors of drivers for man-machine cooperative driving[J]. Journal of Transport Information and Safety, 2019, 37 (1): 42- 48
10 BENLOUCIF A, NGUYEN A T, SENTOUH C, et al Cooperative trajectory planning for haptic shared control between driver and automation in highway driving[J]. IEEE Transactions on Industrial Electronics, 2019, 66 (12): 9846- 9857
doi: 10.1109/TIE.2019.2893864
11 JIANG B, LI X, ZENG Y, et al Human-machine cooperative trajectory planning for semi-autonomous driving based on the understanding of behavioral semantics[J]. Electronics, 2021, 10 (8): 946
doi: 10.3390/electronics10080946
12 KOO Y, KIM J, HAN W. A method for driving control authority transition for cooperative autonomous vehicle [C]// IEEE Intelligent Vehicles Symposium. Seoul: IEEE, 2015: 394–399.
13 ZEEB K, BUCHNER A, SCHRAUF M What determines the take-over time? An integrated model approach of driver take-over after automated driving[J]. Accident Analysis & Prevention, 2015, 78: 212- 221
14 LOUW T, MARKKULA G, BOER E, et al Coming back into the loop: drivers’ perceptual-motor performance in critical events after automated driving[J]. Accident Analysis & Prevention, 2017, 108: 9- 18
15 张文镝, 周诗婕, 金海亮, 等 自动驾驶系统中人机协同的认知决策一体化机制研究[J]. 汽车文摘, 2023, (9): 11- 18
ZHANG Wendi, ZHOU Shijie, JIN Hailiang, et al Research on cognitive decision integration mechanism of human machine collaboration in automated driving system[J]. Automotive Digest, 2023, (9): 11- 18
16 何仁, 赵晓聪, 杨奕彬, 等 基于驾驶人风险响应机制的人机共驾模型[J]. 吉林大学学报: 工学版, 2021, 51 (3): 799- 809
HE Ren, ZHAO Xiaocong, YANG Yibin, et al Man-machine shared driving model using risk-response mechanism of human driver[J]. Journal of Jilin University: Engineering and Technology Edition, 2021, 51 (3): 799- 809
17 LI M, CAO H, LI G, et al A two-layer potential-field-driven model predictive shared control towards driver-automation cooperation[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23 (5): 4415- 4431
doi: 10.1109/TITS.2020.3044666
18 宗长富, 代昌华, 张东 智能汽车的人机共驾技术研究现状和发展趋势[J]. 中国公路学报, 2021, 34 (6): 214- 237
ZONG Changfu, DAI Changhua, ZHANG Dong Human-machine interaction technology of intelligent vehicles: current development trends and future directions[J]. China Journal of Highway and Transport, 2021, 34 (6): 214- 237
19 ERLIEN S M, FUJITA S, GERDES J C Shared steering control using safe envelopes for obstacle avoidance and vehicle stability[J]. IEEE Transactions on Intelligent Transportation Systems, 2016, 17 (2): 441- 451
doi: 10.1109/TITS.2015.2453404
20 HUANG C, HANG P, WU J, et al. Reference-free human-automation shared control for obstacle avoidance of automated vehicles [C]// IEEE International Conference on Systems, Man, and Cybernetics. Toronto: IEEE, 2020: 4398–4403.
21 CONSTANTIN A, PARK J, IAGNEMMA K. A margin-based approach to threat assessment for autonomous highway navigation [C]// IEEE Intelligent Vehicles Symposium Proceedings. Dearborn: IEEE, 2014: 234–239.
22 FALCONE P, BORRELLI F, TSENG H E, et al Linear time-varying model predictive control and its application to active steering systems: stability analysis and experimental validation[J]. International Journal of Robust and Nonlinear Control, 2008, 18 (8): 862- 875
doi: 10.1002/rnc.1245
23 BHARILYA V, KUMAR N Machine learning for autonomous vehicle’s trajectory prediction: a comprehensive survey, challenges, and future research directions[J]. Vehicular Communications, 2024, 46: 100733
doi: 10.1016/j.vehcom.2024.100733
24 闫宏阳. 基于限定Delaunay三角剖分的移动机器人路径规划[D]. 北京: 北京工业大学, 2008.
YAN Hongyang. Path planning for mobile robots based on constrained Delaunay triangulation [D]. Beijing: Beijing University of Technology, 2008.
25 CUI Q, DING R, WEI C, et al Path-tracking and lateral stabilisation for autonomous vehicles by using the steering angle envelope[J]. Vehicle System Dynamics, 2021, 59 (11): 1672- 1696
doi: 10.1080/00423114.2020.1776344
26 龚建伟, 刘凯, 齐建永. 无人驾驶车辆模型预测控制[M]. 北京: 北京理工大学出版社, 2020: 189–191.
27 GUO W, TENG Z, SONG X, et al Toward consumer acceptance of cooperative driving systems: a human-centered shared steering control approach within a hierarchical framework[J]. IEEE Transactions on Consumer Electronics, 2024, 70 (1): 635- 645
doi: 10.1109/TCE.2024.3357985
[1] 魏齐,陶建峰,孙浩,张宇磊,刘成良. 含平衡阀阀控缸的非线性模型预测轨迹跟踪[J]. 浙江大学学报(工学版), 2025, 59(8): 1565-1573.
[2] 陈文强,王东丹,朱文英,汪勇杰,王涛. 基于时空图注意力网络的车辆多模态轨迹预测模型[J]. 浙江大学学报(工学版), 2025, 59(3): 443-450.
[3] 秦海鹏,秦瑞,施晓芬,朱小明. 基于模型预测的四足机器人运动控制[J]. 浙江大学学报(工学版), 2024, 58(8): 1565-1576.
[4] 章军辉,郭晓满,王静贤,付宗杰,刘禹希. 基于非合作博弈的车道保持共享控制[J]. 浙江大学学报(工学版), 2024, 58(5): 1001-1008.
[5] 林俊光,周雅敏,冯彦皓,马聪,吴凡,郑梦莲,俞自涛. 基于热湿负荷与自适应预测时域微网优化调度[J]. 浙江大学学报(工学版), 2023, 57(9): 1832-1842.
[6] 熊伟亮,何德峰,王秀丽,周丹. 基于高斯回归学习的场景优化鲁棒预测控制[J]. 浙江大学学报(工学版), 2023, 57(4): 693-701.
[7] 江冬冬,李道飞,俞小莉. 基于驾驶员需求转矩预测的模型预测控制能量管理[J]. 浙江大学学报(工学版), 2020, 54(7): 1325-1334.
[8] 丁加涛,何杰,李林芷,肖晓晖. 基于模型预测控制的仿人机器人实时步态优化[J]. 浙江大学学报(工学版), 2019, 53(10): 1843-1851.
[9] 杨庆芳, 赵小辉, 郑黎黎, 张伟. 基于模型预测控制的环形交叉口信号配时方法[J]. 浙江大学学报(工学版), 2018, 52(1): 117-124.
[10] 初亮, 李天骄, 孙成伟. 面向再生制动优化的电动车自适应巡航控制策略[J]. 浙江大学学报(工学版), 2017, 51(8): 1596-1602.
[11] 李国飞, 滕青芳, 王传鲁, 张雅琴. 应用滑模控制的四开关逆变器PMSM系统FCS-MPC策略[J]. 浙江大学学报(工学版), 2017, 51(3): 620-627.
[12] 王玄, 陶建峰, 张峰榕, 吴亚瑾, 刘成良. 泵控非对称液压缸系统高精度位置控制方法[J]. 浙江大学学报(工学版), 2016, 50(4): 597-602.
[13] 金鑫, 梁军. 基于动态PLS框架的多变量无静差预测控制[J]. 浙江大学学报(工学版), 2016, 50(4): 750-758.
[14] 李丽娟, 熊路, 刘君, 徐欧官. 基于AP-LSSVM的多模型预测控制[J]. J4, 2013, 47(10): 1741-1746.
[15] 刘志鹏, 颜文俊. 预粉磨系统的智能建模与复合控制[J]. J4, 2012, 46(8): 1506-1511.