Please wait a minute...
浙江大学学报(工学版)  2025, Vol. 59 Issue (4): 870-878    DOI: 10.3785/j.issn.1008-973X.2025.04.023
电气工程     
基于电力系统机电振荡的发电侧惯量评估
任智强1,2(),田铭兴1,2,*(),姜宇1,2,邢东峰1,2
1. 兰州交通大学 自动化与电气工程学院,甘肃 兰州 730070
2. 兰州交通大学 甘肃省轨道交通电气自动化工程实验室,甘肃 兰州 730070
Evaluation of generator side inertia based on electromechanical oscillation of power system
Zhiqiang REN1,2(),Mingxing TIAN1,2,*(),Yu JIANG1,2,Dongfeng XING1,2
1. School of Automation and Electrical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
2. Rail Transit Electrical Automation Engineering Laboratory of Gansu Province, Lanzhou Jiaotong University, Lanzhou 730070, China
 全文: PDF(1102 KB)   HTML
摘要:

新能源发电设备接入发电侧会导致发电侧呈现“弱惯量”特征,影响系统的安全稳定运行. 利用同步相量测量单元(PMU)测量机电振荡响应,提出基于小扰动下机电振荡参数的发电侧惯量评估方法. 根据惯量响应过程的特点,推导与各发电机惯量有关的不平衡功率分配公式. 根据多机系统小信号状态方程与特征根的关系,推导多机系统发电侧惯量计算公式. 介绍单机系统发电侧惯量的计算方法,阐述惯量计算公式中的惯量比与固有振荡频率的测量方法. 通过单机系统、双机互联系统、WSCC3机9节点系统、10机39节点系统仿真算例验证所提方法的正确性. 结果表明,所提方法在多个系统中的发电侧惯量评估值与实际值接近,具有良好的适应性,可用于电力系统的发电侧惯量评估.

关键词: 电力系统发电侧惯量评估惯量响应机电振荡小信号状态方程    
Abstract:

The connection of new energy power generation equipment to the power generation side leads to the emergence of “weak inertia” characteristics on the power generation side, which affects the safe and stable operation of the system. The synchronous phase measurement unit (PMU) was used to measure the electromechanical oscillation response, and based on the electromechanical oscillation parameter under small perturbation, an inertia assessment method for the power generation side was proposed. Based on the characteristics of the inertia response process, the unbalanced power allocation equation related to the inertia of each generator was derived. Based on the relationship between the small-signal state equation and the characteristic root of the multi-machine system, the formula for calculating the inertia of the generation side of a multi-machine system was derived. The inertia calculation of the generation side of a single-machine system was introduced, and the measurement methods of inertia ratio and the intrinsic oscillation frequency in the inertia calculation formula were described. The correctness of the proposed method was verified by simulation examples of a single-machine system, a dual-machine interconnection system, a WSCC 3-machine 9-node system, and a 10-machine 39-node system. Results show that the generation side inertia evaluation values obtained with the proposed method in several systems are close to the actual values and have good adaptability. The method can be used for power system generation side inertia evaluation.

Key words: power system    generation side inertia evaluation    inertia response    electromechanical oscillation    small-signal state equation
收稿日期: 2024-01-25 出版日期: 2025-04-25
CLC:  TM 71  
基金资助: 国家自然科学基金资助项目(52167013);甘肃省自然科学基金重点项目(24JRRA225);甘肃省自然科学基金资助项目(23JRRA891).
通讯作者: 田铭兴     E-mail: rzqlzjtu@163.com;tianmingxing@mail.lzjtu.cn
作者简介: 任智强(1997—),男,硕士生,从事电力系统惯量研究. orcid.org/0009-0004-4523-3083. E-mail:rzqlzjtu@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
任智强
田铭兴
姜宇
邢东峰

引用本文:

任智强,田铭兴,姜宇,邢东峰. 基于电力系统机电振荡的发电侧惯量评估[J]. 浙江大学学报(工学版), 2025, 59(4): 870-878.

Zhiqiang REN,Mingxing TIAN,Yu JIANG,Dongfeng XING. Evaluation of generator side inertia based on electromechanical oscillation of power system. Journal of ZheJiang University (Engineering Science), 2025, 59(4): 870-878.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2025.04.023        https://www.zjujournals.com/eng/CN/Y2025/V59/I4/870

图 1  多机系统示意图
图 2  单机无穷大母线系统结构图
参数数值参数数值
发电机内电势$ E $0.9线路电抗$ {{X}}_{{\mathrm{L}}} $0.15
无穷大端电压$ V $1.0发电机功角$ \delta $/(°)21.1
发电机暂态电抗$ {X}_{\mathrm{d}}^{\prime} $0.3发电机惯量$ H $/s5
变压器等效电抗$ {{X}}_{{\mathrm{T}}} $0.2
表 1  单机无穷大母线系统参数
图 3  单机无穷大母线系统的功角振荡曲线
图 4  双机互联系统结构图
参数数值参数数值
电机内电势$ E_{1} $$ E_{2} $1.03线路电抗$ {{X}}_{{\mathrm{L}}} $0.8
电机暂态电抗$ {X}_{\mathrm{d}1}^{\prime} $$ {X}_{{{\mathrm{d}}2}}^{\prime} $0.2电机功角$ \delta_{1} $$ \delta_{2} $/(°)5.60、?18.77
变压器电抗$ {X}_{{\mathrm{T}}1} $${X}_{{\mathrm{T}}2} $0.1电机惯量$ H_{1} $$ H_{2} $/s4、2
表 2  双机互联系统参数
图 5  各发电机瞬时有功功率改变量曲线(双机互联系统)
图 6  双机互联系统发电机相对功角曲线
编号H/s误差/%
实际值测量值
发电机144.246.00
发电机222.031.50
表 3  双机互联系统的发电机惯量评估结果
图 7  WSCC3机9节点系统结构图
编号S/(MV·A)H/s
发电机1247.523.64
发电机2192.06.40
发电机3128.03.01
表 4  WSCC3机9节点系统的发电机参数
图 8  各发电机瞬时有功功率改变量曲线(WSCC3机9节点系统)
图 9  WSCC3机9节点系统发电机相对功角曲线
编号H/s误差/%
实际值测量值
发电机123.6422.226.00
发电机26.406.183.44
发电机33.012.893.98
表 5  WSCC3机9节点系统发电机惯量评估结果
图 10  新能源接入后各发电机瞬时有功功率改变量曲线(WSCC3机9节点系统)
图 11  WSCC3机9节点系统发电机相对功角曲线(新能源接入后)
编号H/s误差/%
实际值测量值
发电机123.6422.206.09
等值发电机23.203.083.73
发电机33.012.961.66
表 6  新能源接入后WSCC3机9节点系统发电侧惯量评估结果
图 12  10机39节点系统结构图
编号H/s编号H/s
发电机150.00发电机63.48
发电机23.03发电机72.64
发电机33.58发电机82.43
发电机42.86发电机93.45
发电机52.60发电机104.20
表 7  发电机或等效发电机惯量(10机39节点系统)
编号$ \Delta P_{\mathrm{e}i}^{\prime} $/MW编号$\Delta P_{\mathrm{e}i}^{\prime} $/MW
发电机1189.00发电机613.58
发电机211.50发电机710.20
发电机313.06发电机89.52
发电机411.00发电机913.56
发电机510.55发电机1016.02
表 8  各发电机或等效发电机有功功率改变量(10机39节点系统)
编号${\omega _{\mathrm{z}}}$(rad/s)
发电机2-发电机13.918
发电机3-发电机14.124
发电机4-发电机14.126
发电机5-发电机14.124
发电机6-发电机14.124
发电机7-发电机14.122
发电机8-发电机14.608
发电机9-发电机14.123
发电机10-发电机14.124
表 9  相对功角曲线振荡角频率(10机39节点系统)
编号H/s误差/%
实际值测量值
发电机150.0046.836.34
发电机23.032.855.94
发电机33.583.249.50
发电机42.862.734.55
发电机52.602.610.38
发电机63.483.363.45
发电机72.642.534.17
发电机82.432.362.88
发电机93.453.362.61
发电机104.203.975.48
表 10  10机39节点系统发电侧惯量评估结果
1 黄林彬, 辛焕海, 黄伟, 等 含虚拟惯量的电力系统频率响应特性定量分析方法[J]. 电力系统自动化, 2018, 42 (8): 31- 38
HUANG Linbin, XIN Huanhai, HUANG Wei, et al Quantitative analysis method of frequency response characteristics for power systems with virtual inertia[J]. Automation of Electric Power Systems, 2018, 42 (8): 31- 38
doi: 10.7500/AEPS20170605010
2 王博, 杨德友, 蔡国伟 高比例新能源接入下电力系统惯量相关问题研究综述[J]. 电网技术, 2020, 44 (8): 2998- 3007
WANG Bo, YANG Deyou, CAI Guowei Review of research on power system inertia related issues in the context of high penetration of renewable power generation[J]. Power System Technology, 2020, 44 (8): 2998- 3007
3 TAN B, ZHAO J, NETTO M, et al Power system inertia estimation: review of methods and the impacts of converter-interfaced generations[J]. International Journal of Electrical Power and Energy Systems, 2022, 134: 107362
doi: 10.1016/j.ijepes.2021.107362
4 HEYLEN E, TENG F, STRBAC G Challenges and opportunities of inertia estimation and forecasting in low-inertia power systems[J]. Renewable and Sustainable Energy Reviews, 2021, 147: 111176
doi: 10.1016/j.rser.2021.111176
5 CAI G, WANG B, YANG D, et al Inertia estimation based on observed electromechanical oscillation response for power systems[J]. IEEE Transactions on Power Systems, 2019, 34 (6): 4291- 4299
6 李东东, 张佳乐, 徐波, 等 考虑频率分布特性的新能源电力系统等效惯量评估[J]. 电网技术, 2020, 44 (8): 2913- 2921
LI Dongdong, ZHANG Jiale, XU Bo, et al Equivalent inertia assessment in renewable power system considering frequency distribution properties[J]. Power System Technology, 2020, 44 (8): 2913- 2921
7 ZENG F, ZHANG J, ZHOU Y, et al Online identification of inertia distribution in normal operating power system[J]. IEEE Transactions on Power Systems, 2020, 35 (4): 3301- 3304
doi: 10.1109/TPWRS.2020.2986721
8 江俊贤, 陈启超, 王菲, 等 计及不同控制方式的混合直流多馈入系统电网强度评估[J]. 浙江大学学报: 工学版, 2023, 57 (11): 2305- 2313
JIANG Junxian, CHEN Qichao, WANG Fei, et al Grid strength analysis of hybrid multi-infeed HVDC system considering different control modes[J]. Journal of Zhejiang University: Engineering Science, 2023, 57 (11): 2305- 2313
9 林弘毅, 郭潇, 伍梁, 等 电力电子装置强风散热模型简化方法及应用[J]. 浙江大学学报: 工学版, 2021, 55 (6): 1159- 1167
LIN Hongyi, GUO Xiao, WU Liang, et al Simplification method and application of thermal model of forced air cooling system for power electronic device[J]. Journal of Zhejiang University: Engineering Science, 2021, 55 (6): 1159- 1167
10 CAO X, STEPHEN B, ABDULHADI I F, et al Switching Markov Gaussian models for dynamic power system inertia estimation[J]. IEEE Transactions on Power Systems, 2016, 31 (5): 3394- 3403
doi: 10.1109/TPWRS.2015.2501458
11 GUO S, NORRIS S, BIALEK J Adaptive parameter estimation of power system dynamic model using modal information[J]. IEEE Transactions on Power Systems, 2014, 29 (6): 2854- 2861
doi: 10.1109/TPWRS.2014.2316916
12 INOUE T, TANIGUCHI H, IKEGUCHI Y, et al Estimation of power system inertia constant and capacity of spinning-reserve support generators using measured frequency transients[J]. IEEE Transactions on Power Systems, 1997, 12 (1): 136- 143
doi: 10.1109/59.574933
13 ZHANG J, XU H Online identification of power system equivalent inertia constant[J]. IEEE Transactions on Industrial Electronics, 2017, 64 (10): 8098- 8107
doi: 10.1109/TIE.2017.2698414
14 ASHTON P M, SAUNDERS C S, TAYLOR G A, et al Inertia estimation of the GB power system using synchrophasor measurements[J]. IEEE Transactions on Power Systems, 2015, 30 (2): 701- 709
doi: 10.1109/TPWRS.2014.2333776
15 WALL P, GONZALEZ-LONGATT F, TERZIJA V. Estimation of generator inertia available during a disturbance [C]// Proceedings of the IEEE Power and Energy Society General Meeting . San Diego: IEEE, 2012: 1–8.
16 WALL P, TERZIJA V Simultaneous estimation of the time of disturbance and inertia in power systems[J]. IEEE Transactions on Power Delivery, 2014, 29 (4): 2018- 2031
doi: 10.1109/TPWRD.2014.2306062
17 DEL GIUDICE D, GRILLO S Analysis of the sensitivity of extended Kalman filter-based inertia estimation method to the assumed time of disturbance[J]. Energies, 2019, 12 (3): 483
doi: 10.3390/en12030483
18 YOU S, LIU Y, KOU G, et al Non-invasive identification of inertia distribution change in high renewable systems using distribution level PMU[J]. IEEE Transactions on Power Systems, 2018, 33 (1): 1110- 1112
doi: 10.1109/TPWRS.2017.2713985
19 陈志杰, 杨德友, 赵芳琦 随机数据驱动下的两区域系统惯量估计[J]. 东北电力大学学报, 2020, 40 (4): 48- 54
CHEN Zhijie, YANG Deyou, ZHAO Fangqi Two areas system inertia estimation based on ambient data[J]. Journal of Northeast Electric Power University, 2020, 40 (4): 48- 54
20 TUTTELBERG K, KILTER J, WILSON D, et al Estimation of power system inertia from ambient wide area measurements[J]. IEEE Transactions on Power Systems, 2018, 33 (6): 249- 257
21 CHOW J H, CHAKRABORTTY A, VANFRETTI L, et al Estimation of radial power system transfer path dynamic parameters using synchronized phasor data[J]. IEEE Transactions on Power Systems, 2008, 23 (2): 564- 571
doi: 10.1109/TPWRS.2008.919315
22 曹斌, 原帅, 刘家豪, 等 考虑频率动态响应实时分区的电力系统惯量在线评估方法[J]. 电网技术, 2023, 47 (3): 930- 941
CAO Bin, YUAN Shuai, LIU Jiahao, et al Power system online inertia estimation considering real-time clustering of frequency dynamic response[J]. Power System Technology, 2023, 47 (3): 930- 941
23 闵勇, 陈磊, 刘瑞阔, 等 电力系统频率动态中惯量与惯量响应特性辨析[J]. 中国电机工程学报, 2023, 43 (3): 855- 868
MIN Yong, CHEN Lei, LIU Ruikuo, et al Analysis on characteristics of inertia and inertial response in power system frequency dynamics[J]. Proceedings of the CSEE, 2023, 43 (3): 855- 868
24 MILANO F, ORTEGA Á Frequency divider[J]. IEEE Transactions on Power Systems, 2017, 32 (2): 1493- 1501
doi: 10.1109/TPEL.2016.2543222
25 方万良, 李建华, 王建学. 电力系统暂态分析 [M]. 4版. 北京: 中国电力出版社, 2017: 243–257.
26 刘家豪, 王程, 毕天姝 面向新能源电力系统频率时空动态的节点等效惯量指标及其应用[J]. 中国电机工程学报, 2023, 43 (20): 7773- 7788
LIU Jiahao, WANG Cheng, BI Tianshu Node equivalent inertia index for temporal-spatial frequency dynamics of renewable energy power system and its applications[J]. Proceedings of the CSEE, 2023, 43 (20): 7773- 7788
27 陈亮, 毕天姝, 薛安成, 等 基于断路器零阻抗特性的PMU量测状态估计方法[J]. 电力自动化设备, 2014, 34 (5): 105- 110
CHEN Liang, BI Tianshu, XUE Ancheng, et al State estimation based on PMU measurements considering zero-impedance characteristics of circuit breaker[J]. Electric Power Automation Equipment, 2014, 34 (5): 105- 110
doi: 10.3969/j.issn.1006-6047.2014.05.016
28 刘方蕾, 毕天姝, 闫家铭, 等 基于PMU同步测量的分区惯量估计方法[J]. 华北电力大学学报: 自然科学版, 2020, 47 (3): 19- 26
LIU Fanglei, BI Tianshu, YAN Jiaming, et al Area inertia estimation based on PMU synchronous measurements[J]. Journal of North China Electric Power University: Natural Science Edition, 2020, 47 (3): 19- 26
29 刘方蕾, 胥国毅, 刘家豪, 等 考虑电网结构和参数的电力系统惯量分布特性[J]. 电力系统自动化, 2021, 45 (23): 60- 67
LIU Fanglei, XU Guoyi, LIU Jiahao, et al Inertia distribution characteristics of power system considering structure and parameters of power grid[J]. Automation of Electric Power Systems, 2021, 45 (23): 60- 67
doi: 10.7500/AEPS20201017005
30 LIU M, CHEN J, MILANO F On-line inertia estimation for synchronous and non-synchronous devices[J]. IEEE Transactions on Power Systems, 2021, 36 (3): 2693- 2701
doi: 10.1109/TPWRS.2020.3037265
[1] 王慧芳,张晨宇. 采用极限梯度提升算法的电力系统电压稳定裕度预测[J]. 浙江大学学报(工学版), 2020, 54(3): 606-613.
[2] 张程,金涛,李培强,邓慧琼. 采用多目标蝙蝠算法的电力系统广域协调控制策略[J]. 浙江大学学报(工学版), 2019, 53(3): 589-597.
[3] 王冠楠,孙黎滢,甘德强,王彬彬,辛焕海. 电力系统稳定器设计的广义相位补偿法[J]. 浙江大学学报(工学版), 2014, 48(7): 1295-1303.
[4] 吕文韬,沈忱,江道灼,桂帆,范宇,吴兆麟. 具有电容限压功能的限流式统一潮流控制器[J]. 浙江大学学报(工学版), 2014, 48(5): 877-881.
[5] 阎博,江道灼,甘德强,藏玉清. 基于反馈线性化H∞方法的UPFC非线性鲁棒控制器[J]. J4, 2012, 46(11): 1975-1980.
[6] 王康, 符杨, 辛焕海, 王冠楠. 基于新型Back-stepping方法的电力系统
励磁控制器设计
[J]. J4, 2011, 45(4): 747-753.
[7] 陈丽莉,黄民翔,甘德强. 基于改进离散粒子群算法的限流措施优化配置[J]. J4, 2011, 45(3): 510-514.
[8] 丁晓莺, 王建学, 王锡凡, 刘林. 电力系统最优潮流的内点割平面法分析与改进[J]. J4, 2010, 44(4): 771-777.
[9] 刘兆燕,江全元,徐立中,等. 基于特征根聚类的电力系统时滞稳定域研究[J]. J4, 2009, 43(8): 1473-1479.
[10] 李智勇 吴为麟. 基于相空间重构的电能质量扰动特性提取方法[J]. J4, 2008, 42(4): 672-675.
[11] 林震宇 李智勇 吴为麟. 基于嵌入式零树编码的电力系统数据压缩[J]. J4, 2007, 41(2): 291-293.
[12] 颜钢锋 仝庆贻 赵光宙. 基于混杂系统理论的电力系统电压稳定性研究[J]. J4, 2005, 39(5): 637-642.
[13] 白碧蓉 江全元 戚军 曹一家. 考虑时滞影响的统一潮流控制器的控制设计[J]. J4, 2005, 39(12): 1984-1988.
[14] 江全元. 基于极大极小值原理的电力系统稳定器的设计[J]. J4, 2005, 39(12): 1979-1983.