Please wait a minute...
浙江大学学报(工学版)
电气工程     
电力系统稳定器设计的广义相位补偿法
王冠楠1,孙黎滢2,甘德强1,王彬彬3,辛焕海1
1.浙江大学 电气工程学院,浙江 杭州 310027;2.国网浙江省电力公司经济技术研究院,浙江 杭州 310008;3.南京理工大学紫金学院 电子工程与光电子技术系,江苏 南京 210023
Generalized phase compensation method for power system stabilizer design
WANG Guan-nan1, SUN Li-ying2,GAN De-qiang1,WANG Bin-bin3,XIN Huan-hai1
1.College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China;2.State Power Economic Research Institute of Zhejiang, Hangzhou 310008,China;3.Electronics Engineering and Photoelectronic Technology, Nanjing University of Sci.&Tech Zijin College, Nanjing 210023,China
 全文: PDF(1037 KB)   HTML
摘要:

针对经典相位补偿法理论背景不完善、无法应用于多机系统的问题,从代数学的角度提出简单的特征值实部表达式,应用该式从新的角度分析单机无穷大系统中出现负阻尼现象的原因,解释了电力系统稳定器抑制振荡的机理.将该式推广至多机系统,导出适用于多机系统的稳定判据,该判据可以用于稳定器相位补偿参数设计和PSS选址.稳定器增益整定问题被转化为一个只包含少数变量和约束条件的多项式优化问题,介绍2种不同的方法进行求解.通过4个典型系统的算例分析,验证了该方法的可行性和正确性.

Abstract:

A simple eigenvalue representation was introduced from algebraic point of view in order to remedy the deficiencies of traditional phase compensation method which is lack of theoretical background and inapplicable to multi-machine systems. Then the celebrated phase compensation principle in the single-machine infinite bus system was justified and the mechanism how PSS suppresses system oscillation was explained. A stability criterion of multi-machine systems was presented, which can be used to find compensation angle for machines and solve the PSS siting problem. The problem of gain coordination was reduced to a polynomial optimization problem with only several variables and constraints, and it was solved by two different methods. Simulations of four different systems were described. Results show that the suggested method is both feasible and correct.

出版日期: 2014-08-04
:  TM 712  
基金资助:

国家自然科学基金资助项目(51177146);国家电网浙江省电力公司资助项目(浙江海上风电场选型、落点及其对电网稳定运行的影响研究)

通讯作者: 甘德强,男,教授     E-mail: dgan@zju.edu.cn
作者简介: 王冠楠(1986-),男,博士生,从事电力系统稳定和控制的研究.E-mail:wgn.victor@gmail.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

王冠楠,孙黎滢,甘德强,王彬彬,辛焕海. 电力系统稳定器设计的广义相位补偿法[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008-973X.2014.07.022.

WANG Guan-nan, SUN Li-ying,GAN De-qiang,WANG Bin-bin,XIN Huan-hai. Generalized phase compensation method for power system stabilizer design. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008-973X.2014.07.022.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2014.07.022        http://www.zjujournals.com/eng/CN/Y2014/V48/I7/1295

[1]朱方,赵红光,刘增煌,等. 大区电网互联对电力系统动态稳定性的影响[J]. 中国电机工程学报, 2007, 27(1): 17.
ZHU Fang, ZHAO Hong-guang, LIU Zeng-huang, et al. The influence of large power grid interconnected on power system dynamic stability [J]. Proceedings of the Chinese Society of Electrical Engineering, 2007, 27(1): 17.
[2]刘增煌,方思立. 电力系统稳定器对电力系统动态稳定的作用及与其他控制方式的比较[J]. 电网技术, 1998, 22(3): 410.
LIU Zeng-huang, FANG Si-li. The effect of power system stabilizer (PSS) on power system dynamic stability and comparison with other control method[J]. Power System Technology, 1998, 22(3): 410.
[3]KLEIN M, ROGERS G J, KUNDUR P. A fundamental study of inter-area oscillations in power systems [J]. IEEE Transactions on Power Systems, 1991, 6(3): 914-921.
[4]WANG H, SWIFT F J. Multiple stabilizer setting in multi-machine power systems by the phase compensation method [J]. International Journal of Electrical Power and Energy Systems, 1998, 20(4): 241-246.
[5]GIBBARD M J. Co-ordinated design of multimachine power system stabilisers based on damping torque concepts [J]. IEE Proceedings C (Generation, Transmission and Distribution), 1988, 135(4): 276-284.
[6]WANG G, XIN H, GAN D, et al. A probability-one homotopy method for stabilizer parameter tuning [J]. IEEE Transactions on Power Systems, 2013, 28(4): 4624-4633.
[7]CHEN C, HSU Y. Coordinated synthesis of multimachine power system stabilizer using an efficient decentralized modal control (DMC) algorithm [J]. IEEE Transactions on Power Systems, 1987, 2(3): 543-550.
[8]芦晶晶,郭剑,田芳,等. 基于 Prony 方法的电力系统振荡模式分析及 PSS 参数设计[J]. 电网技术, 2004, 28(15): 31-34.
LU Jing-jing, GUO Jian, TIAN Fang, et al. Power system oscillation mode analysis and parameter determination of pss based on prony method [J]. Power System Technology, 2004, 28(15): 31-34.
[9]ABDEL-MAGID Y, ABIDO M. Optimal multiobjective design of robust power system stabilizers using genetic algorithms [J]. IEEE Transactions on Power Systems, 2003, 18(3): 1125-1132.
[10]赵辉,刘鲁源,张更新. 基于微粒群优化算法的最优电力系统稳定器设计[J]. 电网技术, 2006, 30(3): 32-35.
ZHAO Hui, LIU Lu-yuan, ZHANG Geng-xin. Optimal design of power system stabilizer using patial swarm optimazation[J]. Power System Technology, 2006, 30(3): 32-35.
[11]DEMELLO F P, CONCORDIA C. Concepts of synchronous machine stability as affected by excitation control [J]. IEEE Transactions on Power Apparatus and Systems, 1969, 88(4): 316-328.
[12]MOUSSA H A M, YU Y. Dynamic interaction of multi-machine power system and excitation control [J]. IEEE Transactions on Power Apparatus and Systems, 1974, PAS-93(4): 1150-1158.
[13]MA J, WANG H, KOWK LUN L. Clarification on power system stabiliser design [J]. Generation, Transmission and Distribution, IET, 2013, 7(9): 973-981.
[14]MA J, WANG H, ZHANG P. Renewed investigation on power system stabilizer design [J]. Science China Technological Sciences, 2011, 54(10): 2687-2693.
[15]GOOI H, HILL E, MOBARAK M, et al. Coordinated multi-machine stabilizer settings without eigenvalue drift [J]. IEEE Transactions on Power Apparatus and Systems, 1981(8): 3879-3887.
[16]POURBEIK P, GIBBARD M J. Simultaneous coordination of power system stabilizers and FACTS device stabilizers in a multimachine power system for enhancing dynamic performance [J]. IEEE Transactions on Power Systems, 1998, 13(2): 473-479.
[17]ZHANG J, CHUNG C Y, HAN Y. A novel modal decomposition control and its application to PSS design for damping interarea oscillations in power systems [J]. IEEE Transactions on Power Systems, 2012, 27(4): 2015-2025.
[18]ROTMAN J J. A first course in abstract algebra: with applications [M]. New Jersey:Pearson Prentice Hall, 2006.
[19]KUNDUR P, BALU N J, LAUBY M G. Power system stability and control [M]. New York:McGraw-Hill, 1994.
[20]TSE C, TSO S. Refinement of conventional PSS design in multimachine system by modal analysis [J].  IEEE Transactions on Power Systems, 1993, 8(2): 598-605.
[21]PAI M, GUPTA D S, PADIYAR K. Small signal analysis of power systems [M].London: Alpha Science Intl Ltd., 2004.
[22]刘杨名,严正,贾燕冰,等. 电力系统稳定器调参现状与研究[J]. 华东电力, 2007, 35(1): 12-16.
LIU Yang-ming,YAN Zheng,JIA Yan-bing, et al. Status quo and prospects of parameter adjustment for power system stabilizers [J]. East China Electric Power, 2007, 35(1): 12-16.
[23]DOI A, ABE S. Coordinated synthesis of power system stabilizers in multimachine power systems [J]. IEEE Transactions on Power Apparatus and Systems, 1984, PAS-103(6): 1473-1479.
[24]HONG Y, WU W. A new approach using optimization for tuning parameters of power system stabilizers [J]. IEEE Transactions on Energy Conversion, 1999, 14(3): 780-786.
[25]ABIDO M A. Robust design of multimachine power system stabilizers using simulated annealing [J]. IEEE Transactions on Energy Conversion, 2000, 15(3): 297-304.
[26]ABIDO M A. Optimal design of power-system stabilizers using particle swarm optimization [J]. IEEE Transactions on Energy Conversion, 2002, 17(3): 406-413.
[27]GOLUB G, KAHAN W. Calculating the singular values and pseudo-inverse of a matrix [J]. Journal of the Society for Industrial and Applied Mathematics, Series B: Numerical Analysis, 1965, 2(2): 205-224.
[28]A MATLAB power system simulation package[CP/OL].(2006-11-12).http:∥www.pserc.cornell.edu/matpower/.
[29]University of Washington Engineering Lab.Power systems test case archive \[EB/OL\].(1999-08-01).www.ee.washington.edu/research/pstca/.

[1] 卢泽汉,兰洲,吴晶莹,汪震,辛焕海. 基于同步控制的微网多工况小信号稳定分析[J]. 浙江大学学报(工学版), 2016, 50(3): 536-544.
[2] 卢泽汉,兰洲,吴晶莹,汪震,辛焕海. 基于同步控制的微网多工况小信号稳定分析[J]. 浙江大学学报(工学版), 2016, 50(2): 0-.
[3] 屠竞哲, 于洋, 史济全, 辛焕海. 基于系统SOC理论的直流运行方式及控制参数分析[J]. J4, 2012, 46(10): 1831-1838.
[4] 王康, 符杨, 辛焕海, 王冠楠. 基于新型Back-stepping方法的电力系统
励磁控制器设计
[J]. J4, 2011, 45(4): 747-753.
[5] 刘兆燕,江全元,徐立中,等. 基于特征根聚类的电力系统时滞稳定域研究[J]. J4, 2009, 43(8): 1473-1479.