Please wait a minute...
浙江大学学报(工学版)
电气工程     
基于同步控制的微网多工况小信号稳定分析
卢泽汉1,兰洲2,吴晶莹3,汪震1,辛焕海1
1. 浙江大学 电气工程学院, 浙江 杭州 310027; 2. 国网浙江省电力经济技术研究院,浙江 杭州 310009;3. 国网浙江省电力公司杭州供电公司,浙江 杭州 310009
Small signal stability analysis of synchronized control based microgrid under multiple operating conditions
LU Ze han1, LAN Zhou2, WU Jing ying3, WANG Zhen1, XIN Huan hai1
1. College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China;2. Economic Research Institute of State Grid Zhejiang Electric Power Company, Hangzhou 310009, China;3. Hangzhou Power Supply Company of State Grid Zhejiang Electric Power Company, Hangzhou 310009, China
 全文: PDF(1013 KB)   HTML
摘要:

针对风机接入微网后较严重的频率稳定和功率平衡问题,提出微网环境下的双馈风机同步控制策略. 在风机的转子侧,通过引入风机主动降载控制使双馈风机具有向系统提供功率备用和一次调频的功能,可以更有效地向微网提供频率支持. 针对采用同步控制策略的典型风机 储能微网系统进行小信号稳定分析,计算得到的多工况主导特征根表明,微网的主导模式主要与风机轴系以及风机、储能控制内/外环两类控制参数密切相关. 通过风速、负荷等扰动仿真分析表明:风机的降载运行有助于改善微网系统的小扰动性能,协调设计风机和储能的有功下垂系数亦可有效改善主导特征根的阻尼.

Abstract:

A synchronized control strategy of double fed induction generator (DFIG) in microgrid was presented  to overcome the potential severe problems caused by the integration of large scale wind turbine generators into microgrid, such as frequency instability and power imbalance. With synchronized control strategy, DFIG had the ability to provide power reserve, frequency regulation and effective support to the microgrid. Further, the small signal stability (SSS) analysis of a typical microgrid system including DFIG and energy storage system (ESS) under the synchronized control was performed. The calculated dominant eigenvalues under multiple operating conditions indicate that the dominant modes are related to the DFIG shaft and the inner/outer control loop parameters of DFIG or ESS. Finally, the impacts of two types of key control parameters on the dominant eigenvalues were investigated, including the de loading parameters and the active power droop control parameters. Further simulation under wind speed variation and load disturbance indicates that the DFIGs de loading operation can improve the system SSS performance. In addition, the coordination design of active power droop parameters in DFIG and ESS can also improve the damping of the dominant eigenvalues.

出版日期: 2016-09-18
:  TM 712  
基金资助:

国家自然科学基金资助项目(51277160);国家“863”高技术研究发展计划资助项目(2015AA050202).

通讯作者: 汪震, 男, 副教授.     E-mail: eezwang@ieee.org
作者简介: 卢泽汉(1986-), 男, 博士生, 从事电力系统稳定及微网控制策略的研究. E-mail: ZehanLu@gmail.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

卢泽汉,兰洲,吴晶莹,汪震,辛焕海. 基于同步控制的微网多工况小信号稳定分析[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008-973X.2016.03.018.

LU Ze han, LAN Zhou, WU Jing ying, WANG Zhen, XIN Huan hai. Small signal stability analysis of synchronized control based microgrid under multiple operating conditions. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008-973X.2016.03.018.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2016.03.018        http://www.zjujournals.com/eng/CN/Y2016/V50/I3/536

[1] MARGARIS I D, PAPATHANASSIOU S A, HATZIARGYRIOU N D, et al. Frequency control in autonomous power systems with high wind power penetration [J]. IEEE Transactions on Sustainable Energy, 2012, 3(2): 189-199.
[2] MORREN J, HAAN S, KLING W L, et al. Wind turbines emulating inertia and supporting primary frequency control [J]. IEEE Transactions on Power Systems, 2006, 21(1): 433-434.
[3] HUGHES F M, ANAYA LARA O, JENKINS N, et al. Control of DFIG based wind generation for power network support [J]. IEEE Transactions on Power Systems, 2005, 20(4): 1958-1966.
[4] 杜威,姜齐荣,陈蛟瑞. 微电网电源的虚拟惯性频率控制策略[J]. 电力系统自动化,2011,35(23):26-36.
DU Wei, JIANG Qi rong, CHEN Jiao rui. Frequency control strategy of distributed generations based on virtual inertia in a microgrid [J]. Automation of Electric Power Systems, 2011, 5(23): 26-36.
[5] CARDENAS R, PENA R, ASHER G, et al. Power smoothing in wind generation systems using a sensorless vector controlled induction machine driving a flywheel [J]. IEEE Transactions on Energy Conversion, 2004, 19(1): 206-216.
[6] LALOR G, MULLANE A, OMALLEY M. Frequency control and wind turbine technologies [J]. IEEE Transactions on Power Systems, 2005, 20(4): 1905-1913.
[7] MAURICIO J M, MARANO A, GOMEZ EXPOSITO A, et al. Frequency regulation contribution through variable speed wind energy conversion systems [J]. IEEE Transactions on Power Systems, 2009, 24(1): 173-180.
[8] WANG Y, DELILLE G, BAYEM H, et al. High wind power penetration in isolated power systems assessment of wind inertial and primary frequency responses [J]. IEEE Transactions on Power Systems, 2013, 28(3): 2412-2420.
[9] PENA R, CLARE J C, ASHER G M. A doubly fed induction generator using back to back PWM converters supplying an isolated load from a variable speed wind turbine [J]. IEEE Proceedings:Electric Power Applications, 1996, 143(5): 380-387.
[10] PENA R, CLARE J C, ASHER G M. Doubly fed induction generator using back to back PWM converters and its application to variable speed wind energy generation [J]. IEEE Proceedings:Electric Power Applications, 1996, 143(3): 231-241.
[11] PENA R, CARDENASB R, ESCOBARB E, et al. Control strategy for a doubly fed induction generator feeding an unbalanced grid or stand alone load [J]. Electric Power Systems Research, 2009, 79(2): 355-364.
[12] KATIRAEI F, IRAVANI M R, LEHN P W. Small signal dynamic model of a micro grid including conventional and electronically interfaced distributed resources [J]. IET Generation Transmission and Distribution, 2007, 1(3): 369-378.
[13] RUEDA J L, GUAMAN W H, CEPEDA J C, et al. Hybrid approach for power system operational planning with smart grid and small signal stability enhancement considerations [J]. IEEE Transactions on Smart Grid, 2013, 4(1): 530-539.
[14] YANG L H, XU Z, OSTERGAARD J, et al. Oscillatory stability and eigenvalue sensitivity analysis of a DFIG wind turbine system [J]. IEEE Transactions on Energy Conversion, 2011, 26(1): 328-339.
[15] YANG L H, YANG G Y, XU Z, et al. Optimal controller design of a doubly fed induction generator wind turbine system for small signal stability enhancement [J]. IET Generation Transmission and Distribution, 2010, 4(5): 579-597.
[16] ABAD G, LOPEZ J, RODRIGUEZ M, et al. Doubly fed induction machine modeling and control for wind energy generation [M]. London: Wiley Press, 2011:213287.
[17] ROCABERT J, LUNA A, BLAABJERG F, et al. Control of power converters in AC microgrids [J]. IEEE Transactions on Power Electronics, 2012, 27(11): 4734-4749.
[18] BARKLUND E, POGAKU N, PRODANOVIC M, et al. Energy management in autonomous microgrid using stability constrained droop control of inverters [J]. IEEE Transactions on Power Systems, 2008, 23(5): 2346-2352.

[1] 卢泽汉,兰洲,吴晶莹,汪震,辛焕海. 基于同步控制的微网多工况小信号稳定分析[J]. 浙江大学学报(工学版), 2016, 50(2): 0-.
[2] 王冠楠,孙黎滢,甘德强,王彬彬,辛焕海. 电力系统稳定器设计的广义相位补偿法[J]. 浙江大学学报(工学版), 2014, 48(7): 1295-1303.
[3] 屠竞哲, 于洋, 史济全, 辛焕海. 基于系统SOC理论的直流运行方式及控制参数分析[J]. J4, 2012, 46(10): 1831-1838.
[4] 王康, 符杨, 辛焕海, 王冠楠. 基于新型Back-stepping方法的电力系统
励磁控制器设计
[J]. J4, 2011, 45(4): 747-753.
[5] 刘兆燕,江全元,徐立中,等. 基于特征根聚类的电力系统时滞稳定域研究[J]. J4, 2009, 43(8): 1473-1479.