Please wait a minute...
浙江大学学报(工学版)  2025, Vol. 59 Issue (2): 394-401    DOI: 10.3785/j.issn.1008-973X.2025.02.017
机械工程、能源工程     
柴油机缸内碳烟颗粒生长的动力学演变
余愿心1,2(),魏明锐1,2,鞠洪玲1,2,*()
1. 武汉理工大学 现代汽车零部件技术湖北省重点实验室,湖北 武汉 430070
2. 武汉理工大学 汽车零部件技术湖北省协同创新中心,湖北 武汉 430070
Dynamic evolution of soot particle growth in diesel engine cylinder
Yuanxin YU1,2(),Mingrui WEI1,2,Hongling JU1,2,*()
1. Hubei Provincial Key Laboratory of Modern Auto Parts Technology, Wuhan University of Technology, Wuhan 430070, China
2. Auto Parts Technology Hubei Provincial Collaborative Innovation Center, Wuhan University of Technology, Wuhan 430070, China
 全文: PDF(2653 KB)   HTML
摘要:

以一台缸内直喷柴油机为原型,建立三维仿真模型,耦合详细碳烟模型,研究柴油机在不同负荷下缸内碳烟颗粒的质量分布和数密度变化规律. 将计算得到的结果及气流参数作为动力学模拟的初始条件,利用拉格朗日方法建立颗粒动力学模型追踪每个颗粒的运动,计算碳烟颗粒的完整生长过程. 结果表明,燃烧结束后,碳烟成核速率逐渐趋近于零,表面生长和凝结速率低于氧化速率,碳烟总质量逐渐降低;气缸顶部、气缸壁及活塞处的碳烟质量分数均较小. 利用构建的颗粒动力学模型,可以模拟碳烟基本粒子到团聚体的生长过程,在不同负荷下得到的积聚体形貌主要呈枝状和簇状结构,与实验采样得到的几种主要形貌相似;不同负荷下的分形维数均与实验测量值相近,最大误差约为1.5%.

关键词: 柴油机碳烟颗粒详细碳烟模型动力学演变形貌分形维数    
Abstract:

A three-dimensional simulation model was established by taking an in-cylinder direct-injection diesel engine as the prototype. A detailed soot model was coupled to analyze the mass distribution and number density variation of soot particles in the cylinder of the diesel engine under different load. The calculated results and airflow parameters were taken as the initial conditions for dynamic simulation, and the particle dynamics model was established by using the Lagrange method to track the motion of each particle in order to calculate the complete growth process of soot particles. Results showed that the nucleation rate of soot gradually approaches zero, the surface growth and condensation rate were lower than the oxidation rate, and the total mass of soot gradually decreased after combustion. The soot mass fraction at the top of the cylinder, cylinder wall, and piston was relatively low. The constructed particle dynamics model can simulate the growth process from basic particles of soot to aggregates. The particle dynamics model can be used to simulate the growth process from soot elementary particles to aggregates, and the morphology of the aggregates obtained under different loads was mainly branched and clustered structure, which was similar to the main morphologies obtained by experimental sampling. The fractal dimensions under different loads were similar to those measured by the experiments, with a maximum error of about 1.5%.

Key words: diesel engine    soot particle    detailed soot model    dynamic evolution    morphology    fractal dimension
收稿日期: 2023-12-22 出版日期: 2025-02-11
CLC:  TK 42  
基金资助: 国家自然科学基金资助项目(51706163).
通讯作者: 鞠洪玲     E-mail: 1786198559@qq.com;juhongling@whut.edu.cn
作者简介: 余愿心(1998—),男,硕士,从事内燃机性能及控制的研究. orcid.org/0009-0002-3388-0465. E-mail:1786198559@qq.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
余愿心
魏明锐
鞠洪玲

引用本文:

余愿心,魏明锐,鞠洪玲. 柴油机缸内碳烟颗粒生长的动力学演变[J]. 浙江大学学报(工学版), 2025, 59(2): 394-401.

Yuanxin YU,Mingrui WEI,Hongling JU. Dynamic evolution of soot particle growth in diesel engine cylinder. Journal of ZheJiang University (Engineering Science), 2025, 59(2): 394-401.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2025.02.017        https://www.zjujournals.com/eng/CN/Y2025/V59/I2/394

图 1  颗粒碰撞计算的流程图
参数数值
发动机类型四缸四冲程
缸径/mm96
行程/mm103
排量/L2.982
压缩比17.5
标定功率/kW85
标定转速/(r·min?13200
连杆长度/mm155
喷孔数7
表 1  YC4FA 116-40柴油机的主要参数
图 2  燃烧室网格的示意图
模拟类型模型
湍流模型RNG k-ε
蒸发模型Frossling
碰撞模型NTC collision
破碎模型KH-RT
燃烧模型SAGE
碳烟模型Particle Size Mimic
NOx模型Extended Zeldovich
表 2  三维模拟中的数学模型
图 3  缸内压力、放热率的模拟值与实验值对比
图 4  不同负荷下的缸内碳烟质量分数
图 5  气缸顶部的碳烟数密度
图 6  50%负荷下碳烟的平均数密度和总质量
图 7  50%负荷下碳烟成核、表面生长、凝结和氧化过程中的质量变化量
图 8  50%负荷下不同时刻缸内的碳烟总质量分数
p /MPavg/(m·s?1)k/(m2·s?2)?/ (m2·s?3)
0.184.410.757206.71
0.384.400.766153.75
0.635.171.082275.89
0.886.401.089260.02
1.139.221.501294.43
表 3  不同负荷下的气流参数
参数数值
ρp/(g·cm?3)1.8
A/ J1×10?19
e0.4
${z_0}$/ m4×10?10
${{{{{p}}}} _{\text{pl}}}$/ Pa5×109
${u_{\text{f}}}$0.4
表 4  湍流中的粒子特性
图 9  计算域内的颗粒初始空间分布图
图 10  50%负荷下计算开始时的计算域截面图
图 11  50%负荷下计算结束时的计算域截面图
图 12  计算结束时碳烟颗粒积聚体的示意图
图 13  实际的碳烟积聚体形貌[21]
图 14  碳烟颗粒分型维数的变化趋势
1 WAN E L, SUN Z M, LIU Y Z Real-time in situ detection and source tracing of different soot[J]. Optik, 2021, 245: 167711
doi: 10.1016/j.ijleo.2021.167711
2 LI Z C, ZHANG L D, CHUN L In-Situ measurement of soot volume fraction and temperature in axisymmetric soot-laden flames using TR-GSVD algorithm[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 1- 12
3 LIU J, LIU Y Z, CHU C X, et al In situ online detection of lignite and soot by laser-induced breakdown spectroscopy[J]. Spectroscopy and Spectral Analysis, 2021, 41 (3): 954- 960
4 SI M T, CHENG Q, YUAN L, et al Physical and chemical characterization of two kinds of coal-derived soot[J]. Combustion and Flame, 2022, 238 (C): 111759
5 TIAN R Y, ZHANG Y L, KOOK S, et al Effect of jet fuel aromatics on in-flame soot distribution and particle morphology in a small-bore compression ignition engine[J]. Fuel, 2021, 305: 121582
doi: 10.1016/j.fuel.2021.121582
6 WEI J J, ZENG Y, PAN M Z, et al Morphology analysis of soot particles from a modern diesel engine fueled with different types of oxygenated fuels[J]. Fuel, 2020, 267: 117248
7 QIAN W J, HUI X, WANG B, et al An investigation into oxidation-induced fragmentation of soot aggregates by Langevin dynamics simulations[J]. Fuel, 2023, 334 (1): 126547
8 MORAN J, POUX A, YON J Impact of the competition between aggregation and surface growth on the morphology of soot particles formed in an ethylene laminar premixed flame[J]. Journal of Aerosol Science, 2021, 152: 105690
9 MORAN J, YON J, POUX A Monte Carlo aggregation code (MCAC) part 1: fundamentals[J]. Journal of Colloid and Interface Science, 2020, 569: 184- 194
10 HO C A, SOMMERFLED M Modelling of micro-particle agglomeration in turbulent flows[J]. Chemical Engineering Science, 2002, 57 (15): 3073- 3084
doi: 10.1016/S0009-2509(02)00172-0
11 DUVVURI P P, SUKUMARAN S, SHRIVASTAVA R K, et al Modeling the effect of parametric variations on soot particle size distribution in a diesel engine[J]. Journal of Energy Resources Technology, 2020, 142 (3): 032201
doi: 10.1115/1.4044563
12 KUMAR S, RAMKRISHNA D On the solution of population balance equations by discretization-II: a moving pivot-technique[J]. Chemical Engineering Science, 1996, 51 (8): 1333- 1342
doi: 10.1016/0009-2509(95)00355-X
13 WEN J Z, THOMSON M J, PARK S H, et al Study of soot growth in a plug flow reactor using a moving sectional model[J]. Proceedings of the Combust Institute, 2005, 30 (1): 1477- 1484
doi: 10.1016/j.proci.2004.08.178
14 WANG H, REITZ R D, YAO M F, et al Development of an n-heptane-n-butanol-PAH mechanism and its application for combustion and soot prediction[J]. Combustion and Flame, 2013, 160 (3): 504- 519
doi: 10.1016/j.combustflame.2012.11.017
15 王贵龙, 鞠洪玲 DMF/柴油RCCI燃烧碳烟生成数值模拟[J]. 燃烧科学与技术, 2023, 29 (3): 235- 242
WANG Guilong, JU Hongling Numerical simulation of soot formation in DMF/diesel RCCI combustion[J]. Journal of Combustion Science and Technology, 2023, 29 (3): 235- 242
16 MARCHAL C, DELFAU J L, VOVELLE C, et al Modelling of aromatics and soot formation from large fuel molecules[J]. Proceedings of the Combustion Institute, 2009, 32 (1): 753- 759
doi: 10.1016/j.proci.2008.06.115
17 杨芳玲. 柴油机缸内颗粒碰撞与凝并过程研究[D]. 镇江: 江苏大学, 2017: 20-21.
YANG Fangling. Study on the collision and coagulation process of particles in diesel engine [D]. Zhenjiang: Jiangsu University, 2017: 20-21.
18 鞠洪玲, 卞钒全, 魏明锐 柴油机排气管内碳烟颗粒的形貌计算[J]. 华中科技大学学报: 自然科学版, 2020, 48 (12): 61- 65
JU Hongling, BIAN Fanquan, WEI Mingrui Morphology calculation of soot particles in diesel exhaust pipe[J]. Journal of Huazhong University of Science and Technology: Natural Science Edition, 2020, 48 (12): 61- 65
19 WEI M R, LI S, XIAO H L, et al Combustion performance and pollutant emissions analysis using diesel/gasoline/iso-butanol blends in a diesel engine[J]. Energy Conversion and Management, 2017, 149 (17): 381- 391
20 SOMMERFLED M Validation of a stochastic Lagrangian modelling approach for inter-particle collisions in homogeneous isotropic turbulence[J]. International Journal of Multiphase Flow, 2001, 27 (10): 1829- 1858
doi: 10.1016/S0301-9322(01)00035-0
21 JU H L, BIAN F Q, WEI M R, et al Effect of temperature on morphologies and microstructures of soot particles in the diesel exhaust pipe[J]. Energies, 2023, 16 (5488): 5488
[1] 高尔豪,寿恬雨,黄蓓,王伟,施耀. CuCr2O4催化剂形貌特征与其SCR脱硝性能的关系[J]. 浙江大学学报(工学版), 2022, 56(6): 1199-1205.
[2] 杨永波,周哲. 分级循环荷载下保护层开采扰动煤岩强度及裂隙特性研究[J]. 浙江大学学报(工学版), 2022, 56(12): 2445-2453.
[3] 姚喆赫,张操棋,宋其伟,卢习江,孔建强,姚建华. 超声辅助激光修复镍基高温合金V形槽[J]. 浙江大学学报(工学版), 2021, 55(5): 887-895.
[4] 白大鹏,张斌,洪昊岑,李洋,季清华,杨华勇. 生物3D打印装置及打印模型形貌检测[J]. 浙江大学学报(工学版), 2021, 55(2): 289-298.
[5] 冯毅雄,李康杰,高一聪,郑浩,谭建荣. 基于特征与形貌重构的轴件表面缺陷检测方法[J]. 浙江大学学报(工学版), 2020, 54(3): 427-434.
[6] 杜军, 王鑫, 任传奇, 白浩. 金属熔融涂覆成形薄壁件表面形貌与工艺[J]. 浙江大学学报(工学版), 2018, 52(1): 24-28.
[7] 赵斌, 张松, 李剑峰. 基于零件摩擦学性能的磨削参数优化[J]. 浙江大学学报(工学版), 2018, 52(1): 16-23.
[8] 谢贵明, 王稚阳, 包永忠. 发泡剂存在下的偏氯乙烯悬浮共聚合成粒过程[J]. 浙江大学学报(工学版), 2017, 51(2): 378-383.
[9] 吕俊翔, 刘军恒, 孙平, 苏雯博, 孟建, 万垚峰. 荷电反应器状态对柴油机颗粒荷质比的影响[J]. 浙江大学学报(工学版), 2017, 51(12): 2414-2419.
[10] 刘长铖, 李文辉, 张文平, 夏文, 张子鉴, 周耀锋. 大型船用柴油机余热利用系统性能研究[J]. 浙江大学学报(工学版), 2017, 51(11): 2259-2264.
[11] 于洋, 徐长节, 朱陈, 徐倩. 爆孕育过程的微震源事件空间分形行为[J]. 浙江大学学报(工学版), 2017, 51(11): 2175-2181.
[12] 王玉梅, 孙平, 冯浩杰, 刘军恒, 嵇乾. 柴油机燃用铁基FBC燃油的微粒排放特性[J]. 浙江大学学报(工学版), 2017, 51(10): 1981-1987.
[13] 徐辉, 蔡忆昔, 李小华, 施蕴曦, 李伟俊 . 低温等离子体降低柴油机微粒和NOx排放试验研究[J]. 浙江大学学报(工学版), 2016, 50(12): 2418-2423.
[14] 谢阳,罗麒元,麻剑,许沧粟. 喷油嘴喷孔内流动特性数值仿真与试验分析[J]. 浙江大学学报(工学版), 2016, 50(1): 111-115.
[15] 麻剑, 谢阳, 罗麒元, 许沧粟. 精制生物油和柴油混合燃料的柴油机性能[J]. 浙江大学学报(工学版), 2015, 49(4): 632-637.