Please wait a minute...
浙江大学学报(工学版)  2024, Vol. 58 Issue (12): 2575-2585    DOI: 10.3785/j.issn.1008-973X.2024.12.017
交通工程     
基于元胞自动机的城市快速路长距离交织区运行仿真
陈永恒1(),杨绥程1,李世豪1,寇诗雨2
1. 吉林大学 交通学院,吉林 长春 130022
2. 长沙理工大学 交通运输工程学院,湖南 长沙 410114
Operation simulation of urban expressway long-distance interweaving zones based on cellular automata
Yongheng CHEN1(),Suicheng YANG1,Shihao LI1,Shiyu KOU2
1. College of Transportation, Jilin University, Changchun 130022, China
2. School of Traffic and Transportation, Changsha University of Science and Technology, Changsha 410114, China
 全文: PDF(2237 KB)   HTML
摘要:

为了研究城市快速路长距离交织区对交通流运行特性的影响,建立多车道元胞自动机模型. 根据长距离交织区内不同位置的换道车辆,考虑其各自换道行为和换道需求强度,引入3种不同换道规则,并对长距离交织区进行分段设定. 基于动态安全间距、车流管理策略双重要素,构建不同管理策略下的多车道元胞模型. 仿真结果表明,长距离交织区内的强制性驶出换道行为容易引发局部拥堵,形成出入口瓶颈. 虽然双虚线型策略能够提供更多驶出车辆换道机会,但随着占有率的增加,这种优势逐渐减弱,相比之下,虚实线型策略更加合理. 虚实线型策略-主路优先机制保证主路驶出车辆换道路权,不可避免会牺牲部分辅路通行效率. 考虑到辅路的间断交通流特性,虚实线型策略1(先出后入)仍具备一定的实施价值.

关键词: 城市交通微观仿真城市快速路长距离交织区元胞自动机    
Abstract:

A multi-lane cellular automata model was established to study the influence of long-distance interweaving zones on traffic flow in urban expressways. Considering the lane-changing behavior and the intensity of lane-changing needs of vehicles at different positions within the long-distance weaving section, three distinct lane-changing rules were introduced and the long-distance weaving area was segmented accordingly. Cellular models under different traffic management strategies were constructed, considering factors such as dynamic safety distances and traffic flow management. Simulation revealed that mandatory lane-changing behavior within long-distance weaving sections easily led to localized congestion, forming bottlenecks at entrances and exits. Although the double dashed-line strategy provided more opportunities for lane-changing vehicles to exit, this advantage gradually diminished with an increasing occupancy rate. In comparison, the dashed-solid line strategy appeared more reasonable. The dashed-solid line strategy with a main road priority, while maintaining the right of way for vehicles exiting from the main road, inevitably sacrificed some efficiency in the movement of vehicles on the secondary road. However, considering the intermittent traffic flow characteristics of the secondary road, the solid-dashed line strategy 1 (the main road exits first, then followed by the secondary road) still held certain practical value.

Key words: urban traffic    microscopic simulation    urban expressway    long-distance interweaving zone    cellular automata
收稿日期: 2023-11-07 出版日期: 2024-11-25
CLC:  U 491  
基金资助: 国家自然科学基金重点资助项目(52131202).
作者简介: 陈永恒(1978—),男,副教授,从事交通组织、交通管理与控制研究. orcid.org/0000-0002-2598-1373. E-mail:cyh@jlu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
陈永恒
杨绥程
李世豪
寇诗雨

引用本文:

陈永恒,杨绥程,李世豪,寇诗雨. 基于元胞自动机的城市快速路长距离交织区运行仿真[J]. 浙江大学学报(工学版), 2024, 58(12): 2575-2585.

Yongheng CHEN,Suicheng YANG,Shihao LI,Shiyu KOU. Operation simulation of urban expressway long-distance interweaving zones based on cellular automata. Journal of ZheJiang University (Engineering Science), 2024, 58(12): 2575-2585.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2024.12.017        https://www.zjujournals.com/eng/CN/Y2024/V58/I12/2575

图 1  常规快速路出入口示意图
图 2  快速路长距离交织区示意图
图 3  快速路长距离交织区管理策略示意图
图 4  模型场景划分示意图
图 5  换道规则应用示意图
图 6  研究对象实景图
参数定义数值单位参数定义数值单位
$ l_{{\rm{lv}}} $大型车辆所占元胞长度3$ {\rm{cell}} $$\Delta t$时间步长1${\rm{s}}$
$ l_{\rm{sv}} $小型车辆所占元胞长度1${\rm{ cell}} $$ a_{\rm{1}} $舒适加速度1$ {\rm{cell}}/{{\rm{s}}^2} $
$ P_{\rm{outm}} $快速路驶出车辆比例0.4$ a_2 $舒适减速度1$ {\rm{cell}}/{{\rm{s}}^2} $
$P_{\rm{outs}}$辅路驶出车辆比例0.5$ v_{\rm{s}} $最小速度略大于0$ {\rm{cell}}/{\rm{s}} $
$P_{\rm{lvm}}$快速路大型车辆比例0$ p_{\rm{s}} $减速概率参数0.1
$P_{\rm{lvs}}$辅路大型车辆比例0.15$ p_{\rm{d}} $线性插值最大值1
$ v_{\max 1} $快速路最大行驶速度5$ {\rm{cell}}/{\rm{s}} $$ p_0 $线性插值最小值0.8
$ v_{\max 2} $辅路最大行驶速度3$ {\rm{cell/s}} $
表 1  仿真关键参数
图 7  换道频率与占有率关系示意
图 8  平均流量与占有率关系示意
图 9  不同管理策略下主辅路流量对比
图 10  平均速度与占有率关系示意
车道双虚线型策略虚实线策略1虚实线策略2
车道1
车道2
车道3
车道4
车道5
车道6
表 2  不同管理策略下各车道时空轨迹图
1 TREIBER M, KESTING A. Traffic flow dynamics [M]// KESTING A, TREIBER M. Traffic flow dynamics: data, models and simulation . Berlin Heidelberg: Springer-Verlag, 2013: 983–1000.
2 NAGATANI T Modified KdV equation for jamming transition in the continuum models of traffic[J]. Physica A: Statistical Mechanics and its Applications, 1998, 261 (3/4): 599- 607
3 NAGATANI T Jamming transitions and the modified Korteweg-devries equation in a two-lane traffic flow[J]. Physica A: Statistical Mechanics and its Applications, 1999, 265 (1/2): 297- 310
4 叶颖俊, 孙剑 快速路汇入区瓶颈交通流早发性失效研究(第1部分): 建模仿真[J]. 中国公路学报, 2023, 36 (8): 240- 256
YE Yingjun, SUN Jian Early-onset breakdown of bottleneck traffic at expressway merging area, part Ⅰ: modeling and simulation[J]. China Journal of Highway and Transport, 2023, 36 (8): 240- 256
5 叶颖俊, 孙剑 快速路汇入区瓶颈交通流早发性失效研究(第2部分): 致因分析[J]. 中国公路学报, 2024, 37 (2): 275- 292
YE Yingjun, SUN Jian Early-onset breakdown of bottleneck traffic at expressway merging area, part Ⅰ: causation analysis[J]. China Journal of Highway and Transport, 2024, 37 (2): 275- 292
6 吴中, 梁明琰, 杨海飞 基于换道时间分布的交通流随机微分方程[J]. 浙江大学学报: 工学版, 2023, 57 (8): 1629- 1635
WU Zhong, LIANG Mingyan, YANG Haifei Stochastic differential equation of traffic flow model based on distribution of lane-changing duration[J]. Journal of Zhejiang University: Engineering Science, 2023, 57 (8): 1629- 1635
7 BANDO M, HASEBE K, NAKAYAMA A, et al Dynamical model of traffic congestion and numeri cal simulation[J]. Physical Review E, 1995, 51 (2): 1035
doi: 10.1103/PhysRevE.51.1035
8 BERG P, WOODS A On-ramp simulations and solitary waves of a car-following model[J]. Physical Review E, 2001, 64 (3): 035602
doi: 10.1103/PhysRevE.64.035602
9 NAGEL K, SCHRECKENBERG M A cellular automaton model for freeway traffic[J]. Journal De Physique I, 1992, 2 (12): 2221- 2229
doi: 10.1051/jp2:1992262
10 雷丽, 董力耘, 宋涛, 等 基于元胞自动机模型的高架路交织区交通流的研究[J]. 物理学报, 2006, 55 (4): 1711- 1717
LEI Li, DONG Liyun, SONG Tao, et al Study on the traffic flow of weaving section in elevated road system with cellular automaton model[J]. Acta Physica Sinica, 2006, 55 (4): 1711- 1717
doi: 10.3321/j.issn:1000-3290.2006.04.028
11 彭博, 王玉婷, 谢济铭, 等 城市干线短交织区元胞自动机多级换道决策模型[J]. 交通运输系统工程与信息, 2020, 20 (4): 41- 48
PENG Bo, WANG Yuting, XIE Jiming, et al Multi-stage lane changing decision model of urban trunk road's short weaving area based on cellular automata[J]. Journal of Transportation Systems Engineering and Information Technology, 2020, 20 (4): 41- 48
12 MARCZAK F, LECLERCQ L, BUISSON C A macroscopic model for freeway weaving sections[J]. Computer-Aided Civil and Infrastructure Engineering, 2015, 30 (6): 464- 477
doi: 10.1111/mice.12119
13 谢济铭, 彭博, 秦雅琴 基于换道概率分布的多车道交织区元胞自动机模型[J]. 交通运输系统工程与信息, 2022, 22 (3): 276- 285
XIE Jiming, PENG Bo, QIN Yaqin Cellular automata model of multi-lane weaving area based on lane-changing probability distribution[J]. Journal of Transportation Systems Engineering and Information Technology, 2022, 22 (3): 276- 285
14 陈永恒, 李浩楠, 吴场建, 等 基于元胞自动机的附加导流岛型出口仿真建模[J]. 交通运输系统工程与信息, 2022, 22 (4): 96- 105
CHEN Yongheng, LI Haonan, WU Changjian, et al Simulation modeling of additional channelization island type exit based on cellular automata[J]. Journal of Transportation Systems Engineering and Information Technology, 2022, 22 (4): 96- 105
[1] 李劲业,李永强. 融合知识图谱的时空多图卷积交通流量预测[J]. 浙江大学学报(工学版), 2024, 58(7): 1366-1376.
[2] 马壮林,毕宇明,张锐. 换乘优惠政策下公共交通乘客换乘决策行为分析[J]. 浙江大学学报(工学版), 2023, 57(12): 2513-2523.
[3] 高瑾,龚景海,何军. 基于多速度元胞自动机的海洋平台人员疏散[J]. 浙江大学学报(工学版), 2021, 55(9): 1764-1771.
[4] 王飞,徐维祥. 基于LSTM神经网络改进的路阻函数模型[J]. 浙江大学学报(工学版), 2021, 55(6): 1065-1071.
[5] 邓小雷,盛泽枫,张江林,吕笑文,贺忠,王建臣,傅建中. 基于不规则元胞的主轴温度-结构场耦合热拓扑优化设计方法[J]. 浙江大学学报(工学版), 2020, 54(1): 23-32.
[6] 岳文泽, 高佳斌, 熊昌盛. 基于CA非均质性邻接关系的城市扩张模拟[J]. 浙江大学学报(工学版), 2017, 51(11): 2232-2238.
[7] 季学斌, 王慧, 宋春跃. 基于元胞自动机的施工场内交通流建模及安全分析[J]. 浙江大学学报(工学版), 2017, 51(10): 2005-2011.
[8] 张晋 王慧 李平. 基于一维元胞自动机的可变时距跟车模型[J]. J4, 2006, 40(2): 233-237.