Please wait a minute...
浙江大学学报(工学版)  2024, Vol. 58 Issue (12): 2567-2574    DOI: 10.3785/j.issn.1008-973X.2024.12.016
能源工程     
采用斯特林制冷机的低温精馏制氮系统
王泽铭1,2(),孙大明2,*(),庄园2,沈惬2,王天祥3
1. 浙江大学工程师学院,浙江 杭州 310058
2. 浙江大学 制冷与低温研究所,浙江 杭州 310058
3. 航天低温推进剂技术国家重点实验室,北京 100190
Cryogenic distillation system for nitrogen production based on Stirling cryocooler
Zeming WANG1,2(),Daming SUN2,*(),Yuan ZHUANG2,Qie SHEN2,Tianxiang WANG3
1. Polytechnic Institute of Zhejiang University, Hangzhou 310058, China
2. Institute of Refrigeration and Cryogenics, Zhejiang University, Hangzhou 310058, China
3. State Key Laboratory of Technologies in Space Cryogenic Propellants, Beijing 100190, China
 全文: PDF(1783 KB)   HTML
摘要:

针对分布式液氮供应系统相关技术仍不成熟的问题,提出采用大冷量斯特林制冷机的低温精馏制氮系统. 根据不同的系统运行条件,基于Aspen HYSYS搭建3种精馏制氮流程;对每个流程在不同的空气入口温度、压缩空气初步预冷温度、制冷机输入冷量条件下进行数值模拟分析. 对液氮产率、氮提取率、单位产量能耗等进行优化计算,结果表明,采用低压进气,应用冷冻干燥法纯化原料气,之后进行常压精馏是最优流程;在入口温度为10 ℃,初步预冷温度为25 ℃,输入冷量为1 kW的运行工况下,系统液氮产率可达10.38 L/h,氮提取率高达62.19%,比功耗为1.105 kW·h/L. 相对于其他小型液氮生产系统,新系统具有产率大、氮提取率高、比功耗低等显著优点.

关键词: 斯特林制冷机低温精馏制氮系统空气纯化液氮    
Abstract:

A cryogenic distillation system for nitrogen production using Stirling cryocooler with large cooling capacity was proposed, aiming at the problem that the relevant technology of distributed liquid nitrogen supply system was not mature. According to different operating conditions of the system, three kinds of nitrogen production processes were set up based on Aspen HYSYS. The numerical simulation analysis of each process was carried out under the conditions of different air inlet temperatures, compressed air precooling temperatures and input cooling capacities of cryocooler. The liquefaction yield, nitrogen extraction rate and energy consumption were optimized. The results showed that using low pressure intake to compress air, using freeze-drying to purify raw gas, and then using atmospheric pressure rectification was the optimal process. Under the operating conditions of inlet temperature of 10 ℃, initial precooling temperature of 25 ℃ and input cooling capacity of 1 kW, the liquid nitrogen yield can reach 10.38 L/h, the nitrogen extraction rate was as high as 62.19%, and the specific power consumption was 1.105 kW·h/L. Compared with other small liquid nitrogen production systems, this system has the advantages of high yield, high nitrogen extraction rate and low specific power consumption.

Key words: Stirling cryocooler    cryogenic distillation    nitrogen production system    air purification    liquid nitrogen
收稿日期: 2023-11-16 出版日期: 2024-11-25
CLC:  TB 657.8  
通讯作者: 孙大明     E-mail: 22160199@zju.edu.cn;sundaming@zju.edu.cn
作者简介: 王泽铭(1998—),男,硕士生,从事低温液化系统研究. orcid.org/0009-0005-1297-4835. E-mail:22160199@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
王泽铭
孙大明
庄园
沈惬
王天祥

引用本文:

王泽铭,孙大明,庄园,沈惬,王天祥. 采用斯特林制冷机的低温精馏制氮系统[J]. 浙江大学学报(工学版), 2024, 58(12): 2567-2574.

Zeming WANG,Daming SUN,Yuan ZHUANG,Qie SHEN,Tianxiang WANG. Cryogenic distillation system for nitrogen production based on Stirling cryocooler. Journal of ZheJiang University (Engineering Science), 2024, 58(12): 2567-2574.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2024.12.016        https://www.zjujournals.com/eng/CN/Y2024/V58/I12/2567

图 1  小型低温精馏制氮系统流程原理图
图 2  高压进气-常压精馏流程的三维模型示意图
图 3  简易精馏柱计算模型
图 4  精馏柱经济衡算结果
图 5  流程1、2液氮产率随初步预冷温度和制冷机输入冷量的变化曲线
图 6  流程3液氮产率和氮提取率随制冷机输入冷量的变化曲线
图 7  流程1、2氮提取率随初步预冷温度和制冷机输入冷量的变化曲线
图 8  单位产量能耗随初步预冷温度和制冷机输入冷量的变化曲线
图 9  不同空气入口温度下压缩设备与初步预冷设备功耗随制冷机输入冷量的变化曲线
图 10  各流程液氮产率、单位产量能耗随制冷机输入冷量的变化曲线
系统/设备
参考来源
气体纯化和
制冷技术
$q_V^{{\mathrm{LN}}_2} $/(L·h?1)SEC/(kW·h·L?1)P/%
流程1精馏-Stirling10.381.11>99.5
流程2精馏-Stirling10.631.36**>99.5
流程3精馏-Stirling9.851.53**>99.5
Litter[9]PSA-MRJT0.252.56*99.5
Wang等[10]PSA-MRJT1.122.68**98.0**
Wang等[10]精馏-MRJT0.604.5997.5
郭浩等[11]PSA-MRJT5.301.77*98.0
Caughley等[14]PSA-脉冲管12.101.98*
林诗燕[15]PSA-Stirling7.701.46*99.9
CNP 120[16]PSA-(G-M)5.003.20>99.0
StirLITE[17]PSA-Stirling3.502.29*98.0
LN130B[18]PSA-(G-M)5.423.28>99.0
LNP 120[19]PSA-(G-M)5.002.50*98.0
表 1  小型液氮生产系统性能比较
1 QY Research. 低温液体行业研究报告[EB/OL]. (2022-03-31)[2023-05-30]. https://www.qyresearch.com.cn/news/cryogenic-liquid-i0888.html.
2 QY Research. 液氮市场分析[EB/OL]. (2023-09-25)[2023-09-30]. https://www.qyresearch.com.cn/news/liquid-nitrogen-i06633.html.
3 汪青青, 芮明义, 周祥明, 等 液氮损失原因分析及控制措施[J]. 冶金动力, 2023, (1): 46- 48
WANG Qingqing, RUI Mingyi, ZHOU Xiangming, et al Cause analysis and control measures of liqiud nitrogen loss[J]. Metallurgical Power, 2023, (1): 46- 48
doi: 10.3969/j.issn.1006-6764.2023.1.yjdl202301012
4 袭凤君, 胥波, 田现德, 等 KDON-21000/22000型制氧机精馏系统优化与实践[J]. 冶金动力, 2023, (5): 28- 31
QIU Fengjun, XU Bo, TIAN Xiande, et al Optimization and practice of distillation system for KDON-21 000/22 000 oxygen generator[J]. Metallurgical Power, 2023, (5): 28- 31
5 李朋冲 深冷空分制氮工艺的设计[J]. 聚氯乙烯, 2023, 51 (6): 9- 11
LI Pengchong Process design of cryogenic air separation for nitrogen preparation[J]. Polyvinyl Chloride, 2023, 51 (6): 9- 11
doi: 10.3969/j.issn.1009-7937.2023.06.005
6 王恒, 庞文彬, 刘志明, 等 某油田深冷空分制氮工艺比选及优化研究[J]. 现代化工, 2023, 43 (Suppl.1): 250- 257
WANG Heng, PANG Wenbin, LIU Zhiming, et al Comparison and optimization of nitrogen production process by cryogenic air separation in an oilfield[J]. Modern Chemical Industry, 2023, 43 (Suppl.1): 250- 257
7 POTAPOV G G, BOYARSKII M Y, LADOKHIN S D Experimental characteristics of the external mixture cycle of a nitrogen liquefier[J]. Chemical and Petroleum Engineering, 1995, (3): 321- 324
8 PIOTROWSKA-HAJUNS A, CHOROWSKI M Performance analysis of small capacity liquid nitrogen generator based on Joule-Thomson refrigerator coupled with air separation membrane[J]. AIP Conference Proceedings, 2012, 1434 (1): 698- 705
9 LITTLE W A. Design and operation of an office liquid nitrogen generator [C]// CryoPrague . Prague: International Institute of Refrigeration, 2006: 027.
10 WANG H C, GUO H, ZHAO Y X, et al Development and performance test of a miniature movable mixed-refrigerant liquid nitrogen generator[J]. Cryogenics, 2018, 96: 1- 9
doi: 10.1016/j.cryogenics.2018.09.013
11 郭浩, 公茂琼 小型混合工质氮气液化器[J]. 真空与低温, 2020, 26 (3): 234- 240
GUO Hao, GONG Maoqiong Miniature Nitrogen liquefiers based on low-temperature mixture refrigeration[J]. Vacuum and Cryogenics, 2020, 26 (3): 234- 240
doi: 10.3969/j.issn.1006-7086.2020.03.010
12 黄朝坚 利用制氧机废氮进回热式制冷机生产液氮[J]. 深冷技术, 2001, (1): 36
HUANG Zhaojian Production of liquid nitrogen by passing waste nitrogen produced by an oxygen plant into a Stirling cycle refrigerator[J]. Cryogenic Technology, 2001, (1): 36
doi: 10.3969/j.issn.978-7-807.2001.01.012
13 蒋彦龙, 陈国邦, THUMMES Guenter, 等 脉管制冷氮液化器性能实验研究[J]. 低温工程, 2003, (2): 25- 30
JIANG Yanlong, CHEN Guobang, THUMMES G, et al Pulse tube nitrogen liquefier[J]. Cryogenics, 2003, (2): 25- 30
doi: 10.3969/j.issn.1000-6516.2003.02.005
14 CAUGHLEY A, EMERY N, NATION M, et al Commercial pulse tube cryocoolers producing 330 W and 1000 W at 77 K for liquefaction[J]. IEEE Transactions on Applied Superconductivity, 2016, 26 (3): 1- 4
15 林诗燕. 基于大冷量斯特林制冷机的气体液化系统流程设计和初步实验研究[D]. 杭州: 浙江大学, 2022.
LIN Shiyan. Process design and experimental study of gas liquefaction system based on Stirling cryocooler with large cooling capacity [D]. Hangzhou: Zhejiang University, 2022.
16 Cryogenic Nitrogen Plant-CNP 120 [EB/OL]. [2023-06-05]. http://www.imtekcryogenics.com.
17 StirLIN-1 liquid nitrogen generator [EB/OL]. [2023-06-05]. http://www.stirlingcryogenics.eu.
18 LN130B-AC liquid nitrogen generator [EB/OL]. [2023-06-05]. http://noblegencryogenics.com.
19 LNP120 liquid nitrogen plant [EB/OL]. [2023-06-05]. http://www.cryomech.com.
20 王颖丹 制氮工艺流程的优化及效果评测[J]. 山西化工, 2023, 43 (8): 95- 97
WANG Yingdan Optimization and effectiveness evaluation of nitrogen production process flow[J]. Shanxi Chemical Industry, 2023, 43 (8): 95- 97
21 胡忠宽. 浅谈化工生产中空分制氮的方法[EB/OL]. [2023-11-01]. https://xueshu.baidu.com/usercenter/paper/show?paperid=1e210gt02h0w06t0gv7f0830w0241946&site=xueshu_se.
22 CHOUDHURY B K, SAHOO R K, SARANGI S K Design and construction of nitrogen liquefier[J]. International Journal of Advanced Culture Technology, 2015, 3 (2): 42- 49
doi: 10.17703/IJACT.2015.3.2.42
23 浙江紫明科技有限公司. 一种小型单塔精馏制氮系统: CN201921471180.6 [P]. 2020-05-19.
24 安娜. 热泵精馏系统仿真及其热力学研究[D]. 兰州: 兰州理工大学, 2023.
AN Na. Simulation and thermodynamic study of heat pump distillation system [D]. Lanzhou: Lanzhou University of Technology, 2023.
25 郝楠. 混合制冷剂扩散吸收制冷系统气泡泵的理论与实验研究[D]. 杭州: 浙江大学, 2013.
HAO Nan. Experimental and theoretical studies on a bubble pump used for the mixed refrigerant diffusion-absorption refrigeration system [D]. Hangzhou: Zhejiang University, 2013.
[1] 王一博,丁会明,郑津洋,陆群杰,王振宇,徐平,陈志伟. 预应变亚稳态奥氏体不锈钢(S30408)深冷低周疲劳性能[J]. 浙江大学学报(工学版), 2020, 54(11): 2190-2195.
[2] 祁云,孙大明,苏峙岳,乔鑫. 磁共振成像低温超导磁体冷却系统设计及数值分析[J]. 浙江大学学报(工学版), 2019, 53(5): 965-971.
[3] 甘智华, 陶轩, 刘东立, 孙潇, 闫春杰. 日本空间液氦温区低温技术的发展现状[J]. 浙江大学学报(工学版), 2015, 49(10): 1821-1835.
[4] 聂相虹,俞小莉,陈平录,方奕栋. 液氮发动机循环可用能及效率分析[J]. J4, 2010, 44(11): 2159-2163.
[5] 刘林 俞小莉. 液氮发动机试验及效率分析[J]. J4, 2007, 41(5): 774-779.
[6] 刘林 俞小莉 翟昕 张喜州. 液氮发动机的热力循环设计[J]. J4, 2006, 40(11): 1989-1993.