Please wait a minute...
J4  2010, Vol. 44 Issue (11): 2159-2163    DOI: 10.3785/j.issn.1008973X.2010.11.020
能源工程     
液氮发动机循环可用能及效率分析
聂相虹,俞小莉,陈平录,方奕栋
浙江大学 能源工程学系,浙江 杭州 310027
Theoretical analysis of available energy and efficiency in liquid
nitrogen engine cycle
NIE Xiang-hong, YU Xiao-li, CHEN Ping-lu, FANG Yi-dong
Department of Energy Engineering,Zhejiang University,Hangzhou 310027,China
 全文: PDF  HTML
摘要:

针对液氮发动机开始朗肯循环过程可用能损失较大的问题,提出分析方法,研究液氮发动机开式朗肯循环过程中可用能损失分布;研究并设计液氮二级再热系统,分析液氮发动机开式朗肯循环与内燃机混合加热循环的联合循环.结果表明,排气是可用能损失的主要环节之一,约占系统输入可用能的20%;且初始膨胀温度受环境温度限制是导致排气可用能损失的主要原因.再热系统可以消除环境温度因素对循环效率提高的限制;采用二级再热膨胀系统,选取合理的再热温度和二级膨胀压力可以得到更高的效率.采用液氮发动机开式朗肯循环与内燃机混合加热循环的联合循环,可以将无法直接做功的内燃机常压高温排气的温度转化为液氮发动机进气可用能,等质量工质的联合循环将整个系统的平均效率提高了8.06%.

Abstract:

In order to solve the problem of energy loss during the open Rankin cycle of liquid nitrogen(LN2) engine, exergy thermodynamics was used to research the energy loss distribution. A two-stage reheat system was researched and designed, and a combined cycle of open Rankin cycle and internal combustion engine(ICE) was analyzed. The result showed that the exhaust is one of the main parts of available energy loss, which occupies 20% of the input exergy. The main reason for the exhaust exergy loss is that the initial expansion temperature is limited by ambient temperature. The reheat system can eliminate the limitation of ambient temperature on the efficiency improvement. With rationallyselected reheat temperature and expansion pressure, a twostage reheat system can reach higher exergy efficiency. Finally, the combined cycle could convert the exhaust exergy of ICE to the intake exergy of LN2 engine, which cannot be converted to work directly. The mean efficiency of the whole system is increased by 8.06% provided equalmass working substance.

出版日期: 2010-12-23
:  TK 123  
基金资助:

国家教育部博士点专项基金资助项目(20020335079);国家自然科学基金资助项目(50976104).

通讯作者: 俞小莉,女,教授,博导.     E-mail: yuxl@zju.edu.cn
作者简介: 聂相虹(1982-),女,山西阳泉人,博士生,从事车辆动力能源多元化研究.E-mail:niexianghong@gmail.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

聂相虹,俞小莉,陈平录,方奕栋. 液氮发动机循环可用能及效率分析[J]. J4, 2010, 44(11): 2159-2163.

NIE Xiang-hong, YU Xiao-li, CHEN Ping-lu, FANG Yi-dong. Theoretical analysis of available energy and efficiency in liquid
nitrogen engine cycle. J4, 2010, 44(11): 2159-2163.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008973X.2010.11.020        http://www.zjujournals.com/eng/CN/Y2010/V44/I11/2159

[1] BOESE H L,HENCEY J, THOMAS R.Nonpollution motors including cryogenic fluid as the motive means:US,3681609 [P].1972-08-01.
[2] MANNING L,SCHNEIDER R N.Nitrogen vapor engine:US,3786631 [P].1974-01-22.
[3] ORDONEZ C A. Liquid nitrogen fueled,closed Brayton cycle cryogenic heat engine [J].Energy Conversion and Management,2000,41(4):331-341.

[4] WILLAMS J,KNOWLEN C,MATTICK A T,et al.Frostfree cryogenic heat exchangers for automotive propulsion\
[EB/OL\].(20020808)\
[20081110\].http://www.aa.washington.edu/AERP/CRYOCAR/HeatExchanger/Index.htm.
[5] 元广杰,蒋彦龙,苏石川,等.液氮汽车的可行性分析[J].低温工程.2002(2):54-60.
YUAN Guangjie,JIANG Yanlong,SU Shichuang,et al.The analysis of the feasibility of the liquid nitrogen vehicle [J].Cryogenic Engineering,2002(2):54-60.
[6] 俞小莉,元广杰,沈瑜铭,等.气动发动机工作循环的理论分析[J].机械工程学报.2002,38(9):118-122.
YU Xiaoli,YUAN Guangjie,SHEN Yuming,et al.The theoretical analysis of air powered engine work cycle [J].Chinese Journal of Mechanical Engineering,2002,38(9):118-122.
[7] YU Xiaoli,YUAN Guangie,SU Shichuan,et al. The theoretical study on ideal open cycle of the liquid nitrogen engine [J].Journal of Zhejiang University:Science,2002,3(3):258-262.
[8] 刘林,俞小莉,翟昕,等.液氮发动机的热力循环设计[J].浙江大学学报:工学版,2006,40(11):1899-1993.
LIU Lin,YU Xiaoli,ZHAI Xin,et al.Thermal cycle design of liquid nitrogen engine [J].Journal of Zhejiang University:Engineering Science,2006,40(11):1899-1993.
[9] 元广杰.液氮发动机理论与试验研究[D].杭州:浙江大学,2004:111-112.
YUAN Guangjie.Experiment and theoretical research on liquid engine [D].Hangzhou:Zhejiang University,2004:111-112.
[10] 傅秦生.能量系统的热力学分析方法[M].西安:西安交通大学出版社,2005:30-35.
[11] KNOWLEN C, MATTICK A T,BRUCKNER A P,et al.High efficiency energy conversion systems for liquid nitrogen automobiles[C]∥SAE Paper.Detroit:\
[s.n.\],1998:1-6.
[12] 吴存真,张诗针,孙志坚.热力过程分析基础[M].杭州:浙江大学出版社,1996:60-65.
[13] 张阿玲,申威,韩维建,等.车用替代燃料生命周期分析[M].北京:清华大学出版社,2008:45-55.
[14] 刘林.气动发动机工作过程和关键零部件优化研究[D].杭州:浙江大学,2007:31-32.
LIU Lin.Optimal study on working process and key components of air powered engine[D].Hangzhou:Zhejing University,2007:31-32.

[1] 郭轶楠, 雷刚, 王天祥, 王凯, 孙大明. Taconis热声振荡的数值模拟[J]. J4, 2014, 48(2): 327-333.
[2] 赵瑞东, 吴张华, 罗二仓, 戴巍. 热声系统基础实验台模拟[J]. J4, 2013, 47(2): 308-313.
[3] 胡军强, 俞小莉, 聂相虹, 等. 并联式气动-柴油混合动力可行性研究[J]. J4, 2009, 43(09): 1632-1637.