Please wait a minute...
J4  2013, Vol. 47 Issue (2): 308-313    DOI: 10.3785/j.issn.1008-973X.2013.02.018
能源工程     
热声系统基础实验台模拟
赵瑞东1,2, 吴张华1, 罗二仓1, 戴巍1
1. 中国科学院 低温工程学重点实验室 北京 100190;2. 中国科学院 研究生院 北京 100049
Study on the basic experimental rig for thermoacoustic system
ZHAO Rui-dong1,2, WU Zhang-hua1, LUO Er-cang1, DAI Wei1
1. Key Laboratory of Cryogenics, Chinese Academy of Sciences, Beijing 100190, China;
2. Graduate University of Chinese Academy of Sciences, Beijing 100049, China
 全文: PDF  HTML
摘要:

为了方便地研究回热器等热声关键部件在不同声场下的工作性能,寻找部件最优的结构参数及工作条件,提出一种热声基础实验平台.引入双电机实现系统中声场的可控调节,通过理论及数值计算分析系统内部声场的主要调节方式及特性,并对该方案进行初步实验验证.理论分析结果表明负载电机动质量与外接电阻是调节系统声场的主要方式,之后的数值模拟结果表明负载电机动质量对系统性能的影响大于外接电阻.通过数值优化,系统获得的最大净输出声功及热声效率分别为361 W与 39.1%.最后初步的实验结果表明所提出的实验方案可行,与数值计算趋势一致.

Abstract:

For conveniently investigating the performance of core thermoacoustic components (such as regenerator) in different acoustic field and finding the optimal structure or working conditions, a novel experimental rig for thermoacoustic system was proposed. By use of linear motors, controllable regulation of acoustic field in the system was realized. The regulation methods and characteristic of the system acoustic field were analyzed by theory and numerically simulation. Finally, preliminary experiments were given to verify the scheme. Theoretical analysis results show that moving mass and resistance of load alternator are the main means to regulate the acoustic field. Subsequently numerical simulation results show that the influence of moving mass is larger than resistance. By optimization, the maximum net output acoustic power and thermoacoustic efficiency of 361 W and 39.1% are obtained respectively. Finally, the experimental results show that present scheme is feasible and has the same trend with numerical results.

出版日期: 2013-02-01
:  TK 123  
基金资助:

国家“973”重点基础研究发展计划资助项目(2010CB227303);国家自然科学基金重大资助项目(50890181).

通讯作者: 吴张华,男,副研究员.     E-mail: zhhwoo@mail.ipc.ac.cn
作者简介: 赵瑞东(1986—),男,博士生,主要从事热声发动机回热器的研究工作.E-mail: zrd_gscas@126.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

赵瑞东, 吴张华, 罗二仓, 戴巍. 热声系统基础实验台模拟[J]. J4, 2013, 47(2): 308-313.

ZHAO Rui-dong, WU Zhang-hua, LUO Er-cang, DAI Wei. Study on the basic experimental rig for thermoacoustic system. J4, 2013, 47(2): 308-313.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2013.02.018        http://www.zjujournals.com/eng/CN/Y2013/V47/I2/308

[1] BACKHAUS S, SWIFT G W. A thermoacoustic Stirling heat engine [J]. Nature, 1999, 17: 7-17.
[2] YU Guo-yao, LUO Er-cang, DAI Wei, et al. An energy-focused thermoacoustic-Stirling heat engine reaching a high pressure ratio above 1.40 [J]. Cryogenics, 2007, 47: 132134.[3] DAI Wei, LUO Er-cang, ZHANG Yong, et al. Detailed study of a traveling wave thermoacoustic refrigerator driven by a traveling wave thermoacoustic engine [J]. Journal of the Acoustical Society of America, 2006, 119(5): 2686-2692.
[4] BACKHAUS S, TWARD E, PETACH M. Traveling-wave thermoacoustic electric generator [J]. Applied Physics Letters, 2004, 85(6): 1085-1087.
[5] 罗二仓,戴巍,胡剑英,等.一种双作用单级行波热声系统: 中国, 201110101971 [P]. 2012-10-17.
LUO Er-cang, DAI Wei, HU Jian-ying, et al. A double-acting single stage traveling-wave thermoacoustic system: China, 201110101971 [P]. 2012-10-17.
[6] ABDULLAH S, YOUSIF B F, SOPIAN K. Design consideration of low temperature differential double-acting Stirling engine for solar application[J]. Renewable Energy, 2005, 30: 1923-1941.
[7] 罗二仓,戴巍,RAY R.交变流动回热器的热声功能和回热功能[J].工程热物理学报,2006, 27(6): 1-4.
LUO Er-cang, DAI Wei, RAY R. Thermoacoustic and recuperative functions of a cycleflow regenerator [J]. Journal of Engineering Thermophysics, 2006, 27(6): 1-4.
[8] SIMON T W, SEUME J R. A survey of oscillating flow in stirling engine heat exchanger [R]. NASA-CR-182108, Washington, D.C.: NASA, 1988.
[9] SWIFT G W. Thermoacoustics: A Unifying Perspective for some Engines and Refrigerators [M]. Sewickley(PA): Acoustical Society of America Publications, 2002: 98-109.
[10] 满满.行波热声发电系统工作机理的研究[D].北京: 中国科学院理化技术研究所, 2011.
MAN Man. Study on the operating principle of traveling-wave thermoacoustic electrical generator [D]. Beijing: Technical Institute of Physics and Chemistry, Chinese Academy of Science, 2011.
[11] WARD B, CLARK J, SWIFT G W. Design Environment for Low-amplitude Thermoacoustic Energy Conversion (Delta EC Version 6.2). [EB/OL]. [20111120] http: ∥www.lanl.gov/thermoacoustics.
[12] BIWA T, TASHIRO Y, MIZUTANI U. Experimental demonstration of thermoacoustic energy conversion in a resonator [J]. Physical Review E, 2004, 69(6), 066304.

[1] 郭轶楠, 雷刚, 王天祥, 王凯, 孙大明. Taconis热声振荡的数值模拟[J]. J4, 2014, 48(2): 327-333.
[2] 聂相虹,俞小莉,陈平录,方奕栋. 液氮发动机循环可用能及效率分析[J]. J4, 2010, 44(11): 2159-2163.
[3] 胡军强, 俞小莉, 聂相虹, 等. 并联式气动-柴油混合动力可行性研究[J]. J4, 2009, 43(09): 1632-1637.