机械工程 |
|
|
|
|
驻留式微气泡阵列流动减阻机理数值研究 |
朱睿1,2( ),何星宇1,赵晨鸿1,刘宇2,张焕彬1,陈腾飞1,谭鑫1,刘志荣1,*( ) |
1. 厦门大学 航空航天学院,福建 厦门 361005 2. 西藏民族大学 信息工程学院,陕西 咸阳 712082 |
|
Numerical study on flow-drag-reduction mechanism of resident microbubble array |
Rui ZHU1,2( ),Xingyu HE1,Chenhong ZHAO1,Yu LIU2,Huanbin ZHANG1,Tengfei CHEN1,Xin TAN1,Zhirong LIU1,*( ) |
1. School of Aerospace Engineering, Xiamen University, Xiamen 361005, China 2. Information Engineering School, Xizang Minzu University, Xianyang 712082, China |
引用本文:
朱睿,何星宇,赵晨鸿,刘宇,张焕彬,陈腾飞,谭鑫,刘志荣. 驻留式微气泡阵列流动减阻机理数值研究[J]. 浙江大学学报(工学版), 2024, 58(5): 1040-1049.
Rui ZHU,Xingyu HE,Chenhong ZHAO,Yu LIU,Huanbin ZHANG,Tengfei CHEN,Xin TAN,Zhirong LIU. Numerical study on flow-drag-reduction mechanism of resident microbubble array. Journal of ZheJiang University (Engineering Science), 2024, 58(5): 1040-1049.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2024.05.017
或
https://www.zjujournals.com/eng/CN/Y2024/V58/I5/1040
|
1 |
PERLIN M, DOWLING D R, CECCIO S L Freeman scholar review: passive and active skin-friction drag reduction in turbulent boundary layers[J]. Journal of Fluids Engineering: Transactions of the ASME, 2016, 138 (9): 091104
doi: 10.1115/1.4033295
|
2 |
李政. 非光滑疏水表面的微气泡减阻技术研究[D]. 大连: 大连理工大学, 2013. LI Zheng. The study of drag reduction of microbubbles on nonsmooth surface with hydrophobic property [D]. Dalian: Dalian University of Technology, 2013.
|
3 |
PARK H J, TASAKA Y, MURAI Y Bubbly drag reduction investigated by time-resolved ultrasonic pulse echography for liquid films creeping inside a turbulent boundary layer[J]. Experimental Thermal and Fluid Science, 2018, 103 (1): 66- 77
|
4 |
ALAM H S, SUTIKNO P, SOELAIMAN T A F, et al CFD-PBM coupled modeling of bubble size distribution in a swirling-flow nanobubble generator[J]. Engineering Applications of Computational Fluid Mechanics, 2022, 16 (1): 677- 693
doi: 10.1080/19942060.2022.2043186
|
5 |
PARK H J, SAITO D, TASAKA Y, et al Color-coded visualization of microbubble clouds interacting with eddies in a spatially developing turbulent boundary layer[J]. Experimental Thermal and Fluid Science, 2019, 109 (1): 109919
|
6 |
KIM S, OSHIMA N, PARK H J, et al Direct numerical simulation of frictional drag modulation in horizontal channel flow subjected to single large-sized bubble injection[J]. International Journal of Multiphase Flow, 2021, 145 (1): 103838
|
7 |
YOON D, PARK H J, TASAKA Y, et al Drag coefficient of bubbles sliding beneath a towed model ship with variable tilt angles[J]. International Journal of Multiphase Flow, 2022, 149 (1): 103995
|
8 |
KIM K, NAGARATHINAM D, AHN B K, et al Air-water bubbly flow by multiple vents on a hydrofoil in a steady free-stream[J]. Applied Sciences, 2021, 11 (21): 9890
doi: 10.3390/app11219890
|
9 |
MOHAMMED G, MOHAMMED K, AHMED N, et al Numerical investigations of micro bubble drag reduction effect for container ships[J]. Marine Systems and Ocean Technology, 2021, 16 (3): 199- 212
|
10 |
JHA N K, BHATT A, GOVARDHAN R N Effect of bubble distribution on wall drag in turbulent channel flow[J]. Experiments in Fluids, 2019, 60 (8): 1- 18
|
11 |
陈正云, 张清福, 潘翀, 等 超疏水旋转圆盘气膜层减阻的实验研究[J]. 实验流体力学, 2021, 35 (3): 52- 59 CHEN Zhengyun, ZHANG Qingfu, PAN Chong, et al An experimental study on drag reduction of superhydrophobic rotating disk with air plastron[J]. Journal of Experiments in Fluid Mechanics, 2021, 35 (3): 52- 59
|
12 |
姚琰, 罗金玲, 朱坤, 等 利用微气泡减小平板湍流摩阻实验研究[J]. 气体物理, 2017, 2 (4): 29- 35 YAO Yan, LUO Jinling, ZHU Kun, et al Experimental study of turbulent drag reduction on a plate using microbubbles[J]. Physics of Gases, 2017, 2 (4): 29- 35
|
13 |
宋武超, 王聪, 魏英杰, 等 水下航行体俯仰运动微气泡减阻特性试验研究[J]. 兵工学报, 2019, 40 (9): 1902- 1910 SONG Wuchao, WANG Cong, WEI Yingjie, et al Experimental study of microbubble flow and drag reduction characteristics of underwater vehicle in pitching movement[J]. Acta Armamentarii, 2019, 40 (9): 1902- 1910
|
14 |
EVSEEV A R Experimental study of the effect of static pressure on turbulent friction reduction in gas saturation of boundary layer[J]. Journal of Engineering Hermophysics, 2019, 28 (2): 190- 198
doi: 10.1134/S1810232819020036
|
15 |
MONTAZERI M H, ALISHAHI M M Investigation of different flow parameters on air layer drag reduction (ALDR) performance using a hybrid stability analysis and numerical solution of the two-phase flow equations[J]. Ocean Engineering, 2020, 196 (1): 106779
|
16 |
ASIAGBE K S, FAIRWEATHER M, NJOBUENWU D O, et al Large eddy simulation of microbubble transport in a turbulent horizontal channel flow[J]. International Journal of Multiphase Flow, 2018, 94 (1): 80- 93
|
17 |
MURAI Y, SAKAMAKI H, KUMAGAI I, et al Mechanism and performance of a hydrofoil bubble generator utilized for bubbly drag reduction ships[J]. Ocean Engineering, 2020, 216 (1): 108085
|
18 |
FENG Y Y, HU H, PENG G Y, et al Microbubble effect on friction drag reduction in a turbulent boundary layer[J]. Ocean Engineering, 2020, 211 (1): 107583
|
19 |
TENJIMBAYASHI M,DOI K, NAITO M. Microbubble flows in superwettable fluidic channels [J]. RSC Advances , 2019, 9(37): 21220–21224.
|
20 |
ZHU R, ZHANG H B, WEN W Q, et al Flow-drag reduction performance of a resident electrolytic microbubble array and its mechanisms[J]. Ocean Engineering, 2023, 268 (1): 113496
|
21 |
朱睿, 庄启彬, 李尚, 等 电解微气泡生长行为及驻留稳定性[J]. 兵工学报, 2021, 42 (5): 1023- 1031 ZHU Rui, ZHUANG Qibin, LI Shang, et al Growth behaviors and resident stability of electrolyzed microbubble[J]. Acta Armamentarii, 2021, 42 (5): 1023- 1031
|
22 |
GRUNDMANN R. Boundary layer equations and methods of solutions [M]// WENDT J F. Computational fluid dynamics: an introduction . Berlin: Springer, 2009: 153-181.
|
23 |
TAMURA T, ONO Y LES analysis on aeroelastic instability of prisms in turbulent flow[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2003, 91 (12-15): 1827- 1846
doi: 10.1016/j.jweia.2003.09.032
|
24 |
SMAGORINSKY J General circulation experiments with the primitive equations: I. the basic experiment[J]. Monthly Weather Review, 1963, 91 (3): 99- 164
doi: 10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
|
25 |
朱睿, 张焕彬, 庄启彬, 等 驻留式电解微气泡流动稳定性及减阻性能[J]. 工程科学与技术, 2022, 54 (4): 147- 154 ZHU Rui, ZHANG Huanbin, ZHUANG Qibin, et al In-flow stability and flow drag reduction performance of resident electrolyzed microbubble array[J]. Advanced Engineering Sciences, 2022, 54 (4): 147- 154
|
26 |
SANDHAM N D, YAO Y F, LAWAL A A Large-eddy simulation of transonic turbulent flow over a bump[J]. International Journal of Heat and Fluid Flow, 2003, 24 (4): 584- 595
doi: 10.1016/S0142-727X(03)00052-3
|
27 |
DE GRAAFF D B, EATON J K Reynolds-number scaling of the flat-plate turbulent boundary layer[J]. Journal of Fluid Mechanics, 2000, 422 (1): 319- 346
|
28 |
SPALART P R Direct simulation of a turbulent boundary layer up to Rθ=1410[J]. Journal of Fluid Mechanics, 1988, 187 (1): 61- 98
|
29 |
LUND T S, WU X, SQUIRES K D Generation of turbulent inflow data for spatially-developing boundary layer simulations[J]. Journal of Computational Physics, 1988, 140 (2): 233- 258
|
30 |
许春晓 壁湍流相干结构和减阻控制机理[J]. 力学进展, 2015, 45 (1): 111- 140 XU Chunxiao Coherent structures and drag-reduction mechanism in wall turbulence[J]. Advances in Mechanics, 2015, 45 (1): 111- 140
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|