Please wait a minute...
浙江大学学报(工学版)  2022, Vol. 56 Issue (4): 823-832    DOI: 10.3785/j.issn.1008-973X.2022.04.023
航空航天技术     
涡轮叶片斜肋通道冷态流场特性的实验研究
林爽(),吴榕*(),王博,张子捷,魏坤腾
厦门大学 航空航天学院,福建 厦门 361102
Experimental research on cold flow field characteristics of turbine blade oblique rib channel
Shuang LIN(),Rong WU*(),Bo WANG,Zi-jie ZHANG,Kun-teng WEI
School of Aerospace Engineering, Xiamen University, Xiamen 361102, China
 全文: PDF(2864 KB)   HTML
摘要:

为了探究涡轮叶片内部肋通道的流场特性与换热机理,设计不同角度的带肋通道实验模型. 采用流动显示实验与粒子图像测速实验,对通道的典型截面流场进行统计平均特性分析与非定常分析. 结果表明,当扰流肋与流向的夹角为60°~90°时,减小夹角能够降低扰流肋对流体的阻挡作用,增大扰流肋后方旋涡的纵向范围与强度. 减小夹角使第1个肋区间的回流强度先增大后减小,第2个肋区间流体的纵向冲击强度增大. 斜肋结构能够提高主流流体与肋间流体的雷诺应力峰值,增强肋间扰动强度,提升通道的换热特性. 减小夹角可以提升流场的速度振荡幅值与振荡频率,提高通道的换热效率. 减小夹角可以增大流体沿肋向流动的能量与能量波动频率,使得旋涡在向后脱落的过程中更易于与靶面进行能量交换.

关键词: 涡轮叶片扰流肋粒子图像测速(PIV)脱落涡频率本征正交分解(POD)    
Abstract:

The experimental models of ribbed channel with different angles were designed in order to analyze the flow field characteristics and heat transfer mechanism of the internal ribbed channel of turbine blade. The statistical average characteristics and unsteady flow field of typical section of the channel were analyzed by flow visualization experiment and particle image velocimetry experiment. Reducing angle can reduce the blocking effect of the rib on the fluid and increase the longitudinal range and strength of the vortex behind the rib when the angle between the spoiler and the flow direction is between 60°~90°. The reflux strength of the first rib increases first and then decreases with the decrease of angle, and the longitudinal impact strength of the second rib increases. The oblique rib structure can improve the peak Reynolds stress of the mainstream fluid and the intercostal fluid, enhance the intensity of intercostal disturbance and improve the heat transfer characteristics of the channel. Reducing angle can improve the amplitude and frequency of velocity oscillation, and improve the heat transfer efficiency of the channel. Reducing angle can increase the energy and energy fluctuation frequency of the fluid flow along the rib, and make the vortex easier to exchange energy with the target surface in the process of backward shedding.

Key words: turbine blade    rib    particle image velocimetry (PIV)    shedding vortex frequency    proper orthogonal decomposition (POD)
收稿日期: 2021-05-27 出版日期: 2022-04-24
CLC:  V 232  
基金资助: 国家自然科学基金资助项目(11072206);装备预研教育部联合基金资助项目(6141A02033529)
通讯作者: 吴榕     E-mail: shuanglinxmu@163.com;wur@xmu.edu.cn
作者简介: 林爽(1998—),男,硕士生,从事实验流体力学的研究. orcid.org/0000-0001-5802-0328. E-mail: shuanglinxmu@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
林爽
吴榕
王博
张子捷
魏坤腾

引用本文:

林爽,吴榕,王博,张子捷,魏坤腾. 涡轮叶片斜肋通道冷态流场特性的实验研究[J]. 浙江大学学报(工学版), 2022, 56(4): 823-832.

Shuang LIN,Rong WU,Bo WANG,Zi-jie ZHANG,Kun-teng WEI. Experimental research on cold flow field characteristics of turbine blade oblique rib channel. Journal of ZheJiang University (Engineering Science), 2022, 56(4): 823-832.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2022.04.023        https://www.zjujournals.com/eng/CN/Y2022/V56/I4/823

图 1  水洞与PIV(粒子图像测速)系统
图 2  扰流肋模型与PIV采集区域
图 3  流动显示与PIV实验拍摄机位
图 4  示踪粒子的品质
图 5  90°肋的肋间流场变化过程
图 6  60°肋的肋间流场变化过程
图 7  60°、70°、80°、90°肋的中截面时均流场
图 8  换热靶面上方流体的速度分布
图 9  60°、70°、80°、90°肋的中截面时均涡量
图 10  60°、70°、80°、90°肋的中截面湍流强度
图 11  流场速度探针的位置
图 12  速度探针位置的振幅随频率的变化
图 13  70°肋方案前2阶模态的POD系数变化
图 14  70°肋方案前2阶模态振幅随频率的变化
图 15  90°肋方案前4阶模态对应的涡量场
图 16  80°肋方案前4阶模态对应的涡量场
图 17  70°肋方案前4阶模态对应的涡量场
图 18  60°肋方案前4阶模态对应的涡量场
1 张浩, 李录平, 唐学智, 等 重型燃气轮机涡轮叶片冷却技术研究进展[J]. 燃气轮机技术, 2017, 30 (2): 1- 7
ZHANG Hao, LI Lu-ping, TANG Xue-zhi, et al Review of heavy-duty gas turbine blade cooling technology[J]. Gas Turbine Technology, 2017, 30 (2): 1- 7
2 刘大响, 程荣辉 世界航空动力技术的现状及发展动向[J]. 北京航空航天大学学报, 2002, (5): 490- 496
LIU Da-xiang, CHENG Rong-hui Current status and development direction of aircraft power technology in the world[J]. Journal of Beijing University of Aeronautics and Astronautics, 2002, (5): 490- 496
doi: 10.3969/j.issn.1001-5965.2002.05.002
3 CASARSA L, ARTS T Experimental investigation of the aerothermal performance of a high blockage rib-roughened cooling channel[J]. Journal of Turbomachinery, 2005, 127 (3): 580- 588
doi: 10.1115/1.1928933
4 LI S, GHORBANI Z, XIE G N, et al An experimental and numerical study of flow and heat transfer in ribbed channels with large rib pitch-to-height ratios[J]. Journal of Enhanced Heat Transfer, 2013, 20 (4): 305- 319
doi: 10.1615/JEnhHeatTransf.2014010155
5 ALFARAWI S, ABDEL S A, BODALAL A Experimental investigations of heat transfer enhancement from rectangular duct roughened by hybrid ribs[J]. International Journal of Thermal Sciences, 2017, 100 (118): 123- 138
6 MAURER M, VON W J, GRITSCH M. An experimental and numerical study of heat transfer and pressure losses of V-and W-shaped ribs at high Reynolds numbers [C]// Turbo Expo: Power for Land, Sea, and Air. Montreal: ASME, 2007: 219-228.
7 HAN J C, PARK J S Developing heat transfer in rectangular channels with rib turbulators[J]. International Journal of Heat and Mass Transfer, 1988, 31 (1): 183- 195
doi: 10.1016/0017-9310(88)90235-9
8 CHANDRA P R, HAN J C, LAU S C Effect of rib angle on local heat/mass transfer distribution in a two-pass rib-roughened channel[J]. Journal of Turbomachinery, 1988, 110 (2): 233- 241
doi: 10.1115/1.3262186
9 HAN J C, OU S, PARK J S, et al Augmented heat transfer in rectangular channels of narrow aspect ratios with rib turbulators[J]. International Journal of Heat and Mass Transfer, 1989, 32 (9): 1619- 1630
doi: 10.1016/0017-9310(89)90044-6
10 PU J, KE Z Q, WANG J H, et al An experimental investigation on fluid flow characteristics in a real coolant channel of LP turbine blade with PIV technique[J]. Experimental Thermal and Fluid Science, 2013, 45 (2): 43- 53
11 YU R B, PU J, WANG P, et al Auxiliary hole influence on internal flow characteristics in bend region of a real investment: casting blade coolant channel[J]. Experimental Thermal and Fluid Science, 2019, 102 (4): 123- 136
[1] 李飞, 朱鸿鹄, 张诚成, 施斌. 地基变形光纤光栅监测可行性的试验研究[J]. 浙江大学学报(工学版), 2017, 51(1): 204-211.