Please wait a minute...
浙江大学学报(工学版)  2023, Vol. 57 Issue (11): 2200-2209    DOI: 10.3785/j.issn.1008-973X.2023.11.007
机械工程     
考虑复杂度的鲁棒闭环供应链网络设计模型
王语姻1(),张艳伟1,*(),郑美妹2
1. 武汉理工大学 交通与物流工程学院,湖北 武汉 430063
2. 上海交通大学 机械与动力工程学院,上海 200240
Robust closed-loop supply chain network design model considering complexity
Yu-yin WANG1(),Yan-wei ZHANG1,*(),Mei-mei ZHENG2
1. School of Transportation and Logistics Engineering, Wuhan University of Technology, Wuhan 430063, China
2. School of Mechanical and Power Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
 全文: PDF(1045 KB)   HTML
摘要:

针对顾客需求不确定和部分设施节点失效情况下闭环供应链网络设计问题,考虑网络结构复杂度,以最小化闭环供应链运营成本和维护成本为优化目标,构建非线性混合整数规划模型. 采用鲁棒对等式理论处理需求不确定性,采用情景分析方法处理单一设施节点中断不确定性;采用信息熵理论量化网络结构复杂度并采用分段线性逼近方法进行结构复杂度线性重构,构建混合不确定因素影响下的鲁棒优化模型,利用Gurobi求解进行节点开放及流量分配决策. 针对算例,将鲁棒优化模型与随机规划模型进行对比,结果显示,考虑网络结构复杂度进行网络设计,与随机规划模型相比,鲁棒优化模型的目标函数值在不确定情景下的波动幅度显著减小,表明模型具有较好的抵抗外部风险的能力.

关键词: 闭环供应链(CLSC)供应链网络设计设施节点中断不确定性结构复杂度鲁棒优化    
Abstract:

A nonlinear mixed integer programming model was established with the optimization objective of minimizing closed-loop supply chain operation cost and maintenance cost with considering the complexity of network structure, aiming at the closed-loop network design problems under the uncertainty of customer demand and the failure of some facility nodes. The robust counterpart theory and the scenario analysis of robust optimization were used to deal with the demand uncertainty and the interruption uncertainty of a single facility node. The information entropy theory was used to quantify the network structure complexity and a piecewise linearization was used to make linear construction of structural complexity. A robust optimization model under the influence of mixed uncertainties was constructed. The Gurobi solver was used to make node opening or not and traffic allocation decisions. The case study shows that, when considering the network structure complexity, the fluctuation amplitude of the objective function value of robust optimization model under uncertain scenarios is significantly reduced compared with that of the stochastic programming model, and it is proved that the established model has a good ability to resist external risks.

Key words: closed-loop supply chain (CLSC)    supply chain network design    facility node disruption    uncertainty    structure complexity    robust optimization
收稿日期: 2022-12-04 出版日期: 2023-12-11
CLC:  F 274  
基金资助: 国家自然科学基金资助项目(72271162)
通讯作者: 张艳伟     E-mail: wangyuyin7476@163.com;zywtg@whut.edu.cn
作者简介: 王语姻(1998—),女,硕士生,从事供应链优化与智能决策研究. orcid.org/0000-0003-1645-5977. E-mail: wangyuyin7476@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
王语姻
张艳伟
郑美妹

引用本文:

王语姻,张艳伟,郑美妹. 考虑复杂度的鲁棒闭环供应链网络设计模型[J]. 浙江大学学报(工学版), 2023, 57(11): 2200-2209.

Yu-yin WANG,Yan-wei ZHANG,Mei-mei ZHENG. Robust closed-loop supply chain network design model considering complexity. Journal of ZheJiang University (Engineering Science), 2023, 57(11): 2200-2209.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2023.11.007        https://www.zjujournals.com/eng/CN/Y2023/V57/I11/2200

图 1  闭环供应链网络结构图
参数 数值
${C_i}$/元 [80000,85000,83000,78000]
${C_j}$/元 [18000,14000,17000,16000,20000,15000]
${C_r}$/元 [27000,26000,28000,23000,29000,35000]
${D_k}$/件 [[190,200],[310,330],[270,290],[250,350],[250,270],[300,330]]
$c_k^u$/元 [480,560,550,540,560,500]
${N_i}$/件 [750,800,780,850]
${N_j}$/件 [510,490,505,500,560,520]
${N_r}$/件 [430,425,435,420,440,410]
Nm/件 [330,300]
${\text{A}}{{\text{M}}_r}$ 0.8
${\text{A}}{{\text{R}}_k}$ 0.5
${b_s}$ [0.2,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1]
表 1  备选设施节点相关参数设定
节点 ${J_1}$ ${J_2}$ $ {J_3} $ ${J_4}$ ${J_5}$ ${J_6}$
${I_1}$ 33.4 36.9 34.7 39.4 35.0 36.6
${I_2}$ 30.7 38.5 40.8 31.4 40.0 30.0
${I_3}$ 32.0 31.2 36.1 37.6 32.0 35.8
$ {I_4} $ 30.0 31.1 29.8 32.0 28.0 32.4
表 2  生产中心到配送中心的单位运营成本参数设定
节点 ${K_1}$ ${K_2}$ ${K_3}$ ${K_4}$ ${K_5}$ ${K_6}$
${J_1}$ 5.1 3.8 4.0 5.7 4.2 3.8
${J_2}$ 5.4 3.9 4.1 3.2 3.6 4.7
$ {J_3} $ 4.6 4.8 5.2 4.3 4.8 3.7
${J_4}$ 3.3 5.9 6.0 4.2 3.9 3.4
${J_5}$ 6.0 4.5 4.8 5.2 4.7 5.9
${J_6}$ 4.5 4.8 5.2 4.9 4.0 4.6
表 3  配送中心到顾客点的单位运营成本参数设定
节点 ${R_1}$ ${R_2}$ ${R_3}$ ${R_4}$ ${R_5}$ ${R_6}$
${K_1}$ 12.5 10.9 13.1 14.2 12.9 13.0
${K_2}$ 9.7 14.8 9.0 9.5 11.9 11.5
${K_3}$ 14.5 12.4 13.4 11.2 9.6 10.0
${K_4}$ 10.6 11.2 14.9 10.4 12.2 10.5
${K_5}$ 13.7 9.2 10.8 12.6 11.0 11.2
${K_6}$ 10.7 13.7 10.3 13.6 13.1 9.8
表 4  顾客点到回收中心的单位运营成本参数设定
节点 ${I_1}$ ${I_2}$ ${I_3}$ $ {I_4} $
${R_1}$ 7.6 8.2 8.5 6.8
${R_2}$ 6.6 7.1 7.4 7.2
${R_3}$ 7.2 6.2 8.4 8.5
${R_4}$ 8.6 7.5 6.6 6.9
${R_5}$ 8.9 8.0 8.7 7.2
${R_6}$ 5.9 7.5 6.6 9.0
表 5  回收中心到生产中心的单位运营成本参数设定
节点 ${R_1}$ ${R_2}$ ${R_3}$ ${R_4}$ ${R_5}$ ${R_6}$
$ {M}_{1} $ 3.9 4.6 5.4 4.3 5.1 4.7
$ {M}_{2} $ 4.2 4.9 3.5 3.8 4.4 5.2
表 6  回收中心到其他处理点的单位运营成本参数设定
${\varGamma _k} = \varGamma _k^1$ $p_{\rm{ub} }$ $ p_{\rm{lb}} $
0.0 1.1226 0.3634
0.2 1.0974 0.3419
0.4 1.0749 0.3341
0.6 1.0524 0.3258
0.8 1.0311 0.3182
1.0 1.0113 0.3110
表 7  不同不确定水平下的遗憾值限定系数
$p$ $z$/元 $p$ $z$/元
0.3633 491734.8 0.8000 481515.7
0.3700 481541.5 1.1000 478868.0
0.5000 481515.7 1.2000 477892.4
表 8  不同遗憾值限定系数下模型目标函数值变化
图 2  不同遗憾值限定系数下目标函数值变化趋势
不同场景 $z_s^*$/元 $z_0^s$/元 ${z^s}$/元 ${\text{DI}}{{\text{F}}_0}$/% $z_1^s$/元 ${\text{DI}}{{\text{F}}_1}$/%
$ {S}_{0} $ 364794.2 364796.2 473823.3 29.89 391617.2 7.35
$ {S}_{1} $ 374201.9 739112.1 502124.3 34.19 767870.7 105.20
$ {S}_{2} $ 393537.6 764631.7 524913.0 33.38 794655.0 101.93
$ {S}_{3} $ 368170.4 422142.7 474285.6 28.82 425729.2 15.63
$ {S}_{4} $ 365216.0 429216.4 474191.6 29.84 391617.2 7.23
$ {S}_{5} $ 366298.4 427175.3 473823.3 29.35 431002.0 17.66
$ {S}_{6} $ 368152.6 437854.3 475414.3 29.14 440803.0 19.73
$ {S}_{7} $ 365672.5 724292.6 474290.7 29.70 392080.9 7.22
$ {S}_{8} $ 368613.6 720096.6 474257.5 28.66 392053.0 6.36
期望成本 369948.7 539199.1 482094.7 30.33 481904.5 32.04
表 9  不同模型求解性能对比
层级 节点选址结果
生产中心 [0, 1, 0, 1]
配送中心 [0, 1, 0, 1, 1, 1]
回收中心 [0, 1, 0, 1, 0, 0]
表 10  节点选址结果
${\varGamma _k} = \varGamma _k^1$ $\theta $ ${\pi ^0}$ $z_0^*\left( {L_{\rm{c}}^0} \right)$/元
0 0 262.9 355721.8
0.4 0 262.9 374064.2
0.8 0 252.3 392371.7
1.0 0 252.7 401719.0
表 11  无中断场景不同需求不确定水平下模型目标函数值
图 3  中断场景不同需求不确定水平下目标函数变化趋势
${\varGamma _k} = \varGamma _k^1$ $\theta $ ${\pi ^0}$ $z_0^*$/元 $L_{\rm{c}}^0$/元
0 0 270.9 355721.8 355721.8
0 1 262.9 355984.7 355721.8
0 10 260.9 358350.8 355741.8
0 100 247.7 381706.2 356936.0
0 1000 245.7 602637.9 356936.0
表 12  不同复杂度成本调节系数下相关成本值
${\varGamma _k} = \varGamma _k^1$ $p = 0.5$
$\theta $ ${z^*}$/元 $z_{\rm{c}}^*$/元 ${\pi ^*}$ ${z_{\rm{a}}}$/元 $z_{\rm{c} }^{\rm{a}}$/元 ${\pi ^{\rm{a}}}$ ${\text{DIF}}(z)$ ${{{\text{DIF}}(\pi )}}$
0.2 0 369686.3 369686.3 259.3 481775.6 481775.6 314.0 30.3350 21.1525
0.2 1 369945.3 369686.9 258.5 482094.9 481783.3 311.6 30.3301 20.6826
0.2 10 372281.3 369700.1 258.1 484985.8 482185.9 278.0 30.8309 8.6850
0.2 50 382622.1 370297.3 246.5 496225.6 482356.8 277.4 30.2401 12.6057
0.2 100 394954.5 370456.0 245.0 510139.0 482312.5 278.3 29.6758 13.6540
表 13  鲁棒规划期望成本与最优解期望成本比较
图 4  鲁棒规划成本随复杂度成本调节系数变化的趋势
图 5  复杂度相对遗憾值随复杂度成本调节系数变化的趋势
1 SHEN Z J M, ZHAN R L, ZHANG J The reliable facility location problem: formulations, heuristics, and approximation algorithms[J]. INFORMS Journal on Computing, 2011, 23 (3): 470- 482
doi: 10.1287/ijoc.1100.0414
2 王珂, 杨艳, 周建 基于在险价值的物流网络规划模糊两阶段模型与精确求解方法[J]. 运筹与管理, 2020, 29 (2): 88- 96
WANG Ke, YANG Yan, ZHOU Jian Value-at-risk-based fuzzy two-stage model for logistics planning and its accurate solution approach[J]. Operations Research and Management Science, 2020, 29 (2): 88- 96
3 杨晓华, 郭健全 模糊环境下多周期多决策生鲜闭环物流网络[J]. 计算机应用, 2019, 39 (7): 2168- 2174
YANG Xiao-hua, GUO Jian-quan Multi-period multi-decision closed-loop logistics network for fresh product with fuzzy variables[J]. Journal of Computer Applications, 2019, 39 (7): 2168- 2174
doi: 10.11772/j.issn.1001-9081.2018122434
4 FATTAHI M, GOVINDAN K Integrated forward/reverse logistics network design under uncertainty with pricing for collection of used products[J]. Annals of Operations Research, 2017, 253 (1): 193- 225
doi: 10.1007/s10479-016-2347-5
5 HATEFI S M, JOLAI F Robust and reliable forward-reverse logistics network design under demand uncertainty and facility disruptions[J]. Applied Mathematical Modelling, 2014, 38 (9/10): 2630- 2647
6 PENG P, SNYDER L V, LIM A, et al Reliable logistics networks design with facility disruptions[J]. Transportation Research Part B: Methodological, 2011, 45 (8): 1190- 1211
doi: 10.1016/j.trb.2011.05.022
7 BOZARTH C C, WARSING D P, FlYNN B B, et al The impact of supply chain complexity on manufacturing plant performance[J]. Journal of Operations Management, 2009, 27 (1): 78- 93
doi: 10.1016/j.jom.2008.07.003
8 GIANNOCCARO I, NAIR A, CHOI T The impact of control and complexity on supply network performance: an empirically informed investigation using NK simulation analysis[J]. Decision Sciences, 2018, 49 (4): 625- 659
doi: 10.1111/deci.12293
9 WANG H, GU T, JIN M Z, et al The complexity measurement and evolution analysis of supply chain network under disruption risks[J]. Chaos, Solitons and Fractals: Applications in Science and Engineering: An Interdisciplinary Journal of Nonlinear Science, 2018, 116: 72- 78
10 LIN Y H, WANG Y, LEE L H, et al Robust facility location with structural complexity and demand uncertainty[J]. Flexible Services and Manufacturing Journal, 2021, 33 (2): 485- 507
doi: 10.1007/s10696-020-09382-8
11 OLIVARES AGUILA J, ElMARAGHY W Structural complexity and robustness of supply chain networks based on product architecture[J]. International Journal of Production Research, 2018, 56 (20): 6701- 6718
doi: 10.1080/00207543.2018.1489158
12 SNYDER L V, DASKIN M S Stochastic p-robust location problems[J]. IIE Transactions, 2006, 38 (11): 971- 985
13 BERTSIMAS D, SIM M The price of robustness[J]. Operations Research, 2004, 52 (1): 35- 53
doi: 10.1287/opre.1030.0065
14 BERTSIMAS D, SIM M Robust discrete optimization and network flows[J]. Mathematical Programming, 2003, 98 (1−3): 49- 71
doi: 10.1007/s10107-003-0396-4
15 LIN Y H, WANG Y, LEE L H, et al Consistency matters: revisiting the structural complexity for supply chain networks[J]. Physica A: Statistical Mechanics and its Applications, 2021, 572: 125862
doi: 10.1016/j.physa.2021.125862
16 代颖, 马祖军, 刘飞 再制造闭环物流网络优化设计模型[J]. 中国机械工程, 2006, 17 (8): 809- 814
DAI Ying, MA Zu-jun, LIU Fei Optimization model for closed-loop logistics network design in a remanufacturing environment[J]. China Mechanical Engineering, 2006, 17 (8): 809- 814
[1] 谭伟,刘景升,祖晖,全洪乾. 参数不确定和扰动下智能汽车路径跟踪控制[J]. 浙江大学学报(工学版), 2023, 57(4): 702-711.
[2] 刘晓航,郑山锁,董淑卿,杨丰,董晋琪,张晓宇. 变电站主接线系统抗震韧性多指标评估流程[J]. 浙江大学学报(工学版), 2023, 57(3): 583-590.
[3] 张科文,潘柏松. 考虑非线性模型不确定性的航天器自主交会控制[J]. 浙江大学学报(工学版), 2022, 56(4): 833-842.
[4] 李颖,王冠雄,闫伟,赵营鸽,马重蕾. 改进的稀疏网格配点法对EIT电导率分布的不确定性量化[J]. 浙江大学学报(工学版), 2022, 56(3): 613-621.
[5] 何飞,金苍宏,吴明晖. 基于意图识别的不确定性行为序列预测方法[J]. 浙江大学学报(工学版), 2022, 56(2): 254-262.
[6] 赵福林,张通,马光,陈哲,郭创新,张金江. 考虑源-荷波动的电力系统灵活性运行域研究[J]. 浙江大学学报(工学版), 2021, 55(5): 935-947.
[7] 周爱民,刘宏斌,张书涛,欧阳晋焱. 面向汽车主客观审美评价的不确定性推理模型[J]. 浙江大学学报(工学版), 2021, 55(3): 419-429.
[8] 王泓晖,房鑫,李德江,刘贵杰. 基于动态贝叶斯网络的变幅载荷下疲劳裂纹扩展预测方法[J]. 浙江大学学报(工学版), 2021, 55(2): 280-288.
[9] 孙超,李孟晖,韩飞. 智慧公路多源数据下的交通出行演化模型[J]. 浙江大学学报(工学版), 2020, 54(3): 546-556.
[10] 杨新宇,胡业发. 不确定环境下复杂产品维护、维修和大修服务资源调度优化[J]. 浙江大学学报(工学版), 2019, 53(5): 852-861.
[11] 袁海辉,葛一敏,甘春标. 不确定性扰动下双足机器人动态步行的自适应鲁棒控制[J]. 浙江大学学报(工学版), 2019, 53(11): 2049-2057.
[12] 赵传松, 任红格, 史涛, 李福进. 内在动机轮式倒立摆反应式认知系统[J]. 浙江大学学报(工学版), 2018, 52(6): 1073-1080.
[13] 王越, 苏宏业, 邵寒山, 卢山,谢磊. 需求与公用工程不确定的生产计划与调度集成[J]. 浙江大学学报(工学版), 2017, 51(1): 57-67.
[14] 姚霄雯, 蒋建群, 刘国华. 基于拱冠位移的拱坝地震易损性[J]. J4, 2013, 47(10): 1839-1845.
[15] 欧阳柳,徐进,龚小谨,刘济林. 基于不确定性分析的视觉里程计优化[J]. J4, 2012, 46(9): 1572-1579.