Please wait a minute...
浙江大学学报(工学版)  2023, Vol. 57 Issue (11): 2188-2199    DOI: 10.3785/j.issn.1008-973X.2023.11.006
机械工程     
四向穿梭车仓储系统复合作业调度优化
许丽丽1(),詹燕1,*(),鲁建厦1,郎一丁2
1. 浙江工业大学 机械工程学院,浙江 杭州 310032
2. 宁波富佳实业股份有限公司,浙江 宁波 330200
Compound operation scheduling optimization in four-way shuttle warehouse system
Li-li XU1(),Yan ZHAN1,*(),Jian-sha LU1,Yi-ding LANG2
1. College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310032, China
2. Ningbo Fujia Industrial Co. Ltd, Ningbo 330200, China
 全文: PDF(1485 KB)   HTML
摘要:

为了提高仓储系统作业效率,对四向穿梭车仓储系统复合作业开展调度优化研究. 在四向穿梭车和提升机采用复合作业完成任务的基础上,考虑设备在水平方向和垂直方向的协同作业特性. 通过四向穿梭车和提升机开始和结束作业时间以及开始作业层数之间的联系,在不同作业模式下进行讨论,从而构建以出入库作业时间最短为目标的数学模型. 提出基于任务分类的方法对遗传算法的种群进行初始化,随后在该方法的基础上完成种群的交叉和变异来求解模型,进而得出系统的最优任务分配及排序. 通过实例分析四向穿梭车数量及单双台提升机对系统作业效率和成本的影响,验证基于任务分类的遗传算法的有效性,结果表明该算法至少提高10.3%的作业效率.

关键词: 四向穿梭车仓储系统调度优化复合作业任务分类遗传算法    
Abstract:

The compound operation scheduling optimization in four-way shuttle warehouse system was studied to improve the efficiency of storage system operations. A mathematical model was established with the goal of minimizing inbound and outbound operation times to optimize the scheduling problem of the system. This model was based on the combined operation of a four-way shuttle and an elevator, and the collaborative operation characteristics in both horizontal and vertical directions were considered. Furthermore, the model was analyzed under various operating modes by examining the connection between the start and end operation times of the four-way shuttle and the elevator, as well as the starting operation tiers. The method based on the task classification was proposed to initialize the population of the genetic algorithm. The crossover and the mutation of the population were completed to solve the model, and then the task allocation and sequence of the system were optimized. Some experiments were conducted to verify the effectiveness of the improved genetic algorithm. The influence of the number of four-way shuttles on the operation time and system cost was analyzed, and the operation efficiencies of single and double elevators in the system were compared. The effectiveness of the genetic algorithm based on the task classification was verified, and the results showed that the operation efficiency was improved by at least 10.3%, by using the proposed algorithm.

Key words: four-way shuttle warehouse system    scheduling optimization    compound operation    task classification    genetic algorithm
收稿日期: 2022-12-09 出版日期: 2023-12-11
CLC:  TP 391  
基金资助: 浙江省尖兵研发攻关计划资助项目(2023C01063);浙江省重点研发计划资助项目(2018C01003)
通讯作者: 詹燕     E-mail: 2111602062@zjut.edu.cn;yzhan@zjut.edu.cn
作者简介: 许丽丽(1994—),女,博士生,从事智能仓储系统调度研究. orcid.org/0000-0003-4970-9427. E-mail: 2111602062@zjut.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
许丽丽
詹燕
鲁建厦
郎一丁

引用本文:

许丽丽,詹燕,鲁建厦,郎一丁. 四向穿梭车仓储系统复合作业调度优化[J]. 浙江大学学报(工学版), 2023, 57(11): 2188-2199.

Li-li XU,Yan ZHAN,Jian-sha LU,Yi-ding LANG. Compound operation scheduling optimization in four-way shuttle warehouse system. Journal of ZheJiang University (Engineering Science), 2023, 57(11): 2188-2199.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2023.11.006        https://www.zjujournals.com/eng/CN/Y2023/V57/I11/2188

图 1  四向穿梭车仓储系统示意图
图 2  四向车系统复合作业路径示意图
图 3  四向车在 $ z(u) = z(v) $时完成空载作业路径图
图 4  2台提升机路径示意图
图 5  改进遗传算法流程图
图 6  染色体示例
图 7  第1层染色体交叉操作示意图
序号 入库货位 序号 出库货位
1 (?10,4,3) 1 (7,19,2)
2 (?1,5,4) 2 (8,9,3)
3 (?8,7,2) 3 (8,3,3)
4 (?9,7,4) 4 (2,17,2)
5 (5,2,3) 5 (9,7,4)
6 (?7,7,1) 6 (6,10,4)
7 (10,7,4) 7 (?10,19,2)
8 (?4,12,3) 8 (2,7,2)
9 (4,8,5) 9 (?5,7,5)
10 (3,8,5) 10 (9,19,5)
11 (?9,17,4) 11 (?4,7,4)
12 (7,12,4) 12 (4,17,3)
13 (?7,3,5) 13 (10,8,1)
14 (2,7,1) 14 (?10,5,1)
15 (10,7,2) 15 (4,13,5)
16 (?5,15,5) 16 (?7,2,1)
17 (?1,7,3) 17 (6,7,4)
18 (?7,15,1) 18 (2,15,1)
19 (?7,7,3) 19 (4,14,1)
20 (2,7,4) 20 (8,4,2)
表 1  出入库任务列表
编号 装载货位 编号 装载货位 编号 装载货位
1 (3, 3, 5) 9 (2, 6, 3) 17 (3, 17, 1)
2 (5, 7, 3) 10 (5, 6, 3) 18 (5, 2, 5)
3 (3, 16, 1) 11 (5, 2, 4) 19 (5, 3, 3)
4 (4, 2, 4) 12 (9, 9, 3) 20 (?10, 3, 4)
5 (1, 11, 3) 13 (?10, 2, 3) 21 (5, 2, 1)
6 (2, 14, 3) 14 (6, 17, 4) 22 (4, 7, 5)
7 (2, 13, 3) 15 (5, 2, 2) 23 (5, 5, 2)
8 (7, 7, 4) 16 (5, 3, 4) 24 (?4, 4, 4)
表 2  初始状态下的装载货位
m TZ/s TW/s TM/s TC/s
1 186.36 0 73.43 186.36
2 104.40 47.70 65.16 152.10
63.20 88.90
3 67.90 61.22 59.35 129.12
42.24 86.88
35.30 93.82
4 24.06 95.47 64.86 119.53
51.93 65.20
55.90 63.63
64.60 54.93
表 3  不同四向车台数下IGA优化的系统作业时间
图 8  不同四向车台数下的成本
编号 作业顺序
1 3-6, 4-7,19-11,14-16,15-8,17-12
2 2-1,10-3,20-5,9-15,16-14,7-10
3 8-4,13-9,12-18,11-17,5-2,6-19,18-13
表 4  四向车台数为3时的作业顺序
no 算法 AVE/s δ/% VAR
20 IGA 188.12 11.9 4.60
GA 213.54 6.78
50 IGA 286.90 12.3 3.52
GA 327.31 4.38
70 IGA 416.67 16.3 5.57
GA 467.80 7.86
100 IGA 724.30 10.3 6.67
GA 787.20 9.65
200 IGA 2068.70 15.7 10.39
GA 2302.67 16.74
500 IGA 5643.20 17.0 14.60
GA 6096.10 19.30
表 5  不同订单规模下算法优化结果
图 9  订单规模为500时算法迭代图
图 10  订单规模为200时算法优化的系统作业时间
图 11  不同订单规模不同提升机台数下完成任务时间
1 AZADEH K, DE KOSTER R, ROY D Robotized and automated warehouse systems: review and recent developments[J]. Transport Science, 2019, 53 (4): 917- 945
doi: 10.1287/trsc.2018.0873
2 ROY D, KRISHNAMURTHY A, HERAGU S, et al Queuing models to analyze dwell-point and cross-aisle location in autonomous vehicle-based warehouse systems[J]. European Journal of Operational Research, 2015, 242 (1): 72- 87
doi: 10.1016/j.ejor.2014.09.040
3 EKREN B Y A multi-objective optimisation study for the design of an AVS/RS warehouse[J]. International Journal of Production Research, 2021, 59 (4): 1107- 1126
doi: 10.1080/00207543.2020.1720927
4 WANG Y, LIU Z, HUANG K, et al Model and solution approaches for retrieval operations in a multi-tier shuttle warehouse system[J]. Computers Industrial Engineering, 2020, 141: 106283
doi: 10.1016/j.cie.2020.106283
5 CARLO H J, VIS I Sequencing dynamic storage systems with multiple lifts and shuttles[J]. International Journal of Production Economics, 2012, 140 (2): 844- 853
doi: 10.1016/j.ijpe.2012.06.035
6 汤洪涛, 程晓雅, 李修琳, 等 跨层跨巷道穿梭车仓储系统复合作业路径优化[J]. 计算机集成制造系统, 2022, 28 (6): 1888- 1902
TANG Hong-tao, CHENG Xiao-ya, LI Xiu-lin, et al Optimization of composite path planning of tier-to-tier and aisle-to-aisle shuttle based storage and retrieval system[J]. Computer Integrated Manufacturing Systems, 2022, 28 (6): 1888- 1902
7 刘刚, 王艳艳, 黄珂, 等 穿梭车自动存取系统任务调度算法适配性研究[J]. 计算机集成制造系统, 2022, 28 (5): 1435- 1448
LIU Gang, WANG Yan-yan, HUANG Ke, et al Adaptability of task scheduling algorithm for shuttle-based storage and retrieval system[J]. Computer Integrated Manufacturing Systems, 2022, 28 (5): 1435- 1448
8 何昕杰, 周少武, 张红强, 等 基于改进遗传算法的四向穿梭车系统订单排序优化[J]. 系统仿真学报, 2021, 33 (9): 2166- 2179
HE Xin-jie, ZHOU Shao-wu, ZHANG Hong-qiang, et al Order sorting optimization for four-way shuttle system based on improved genetic algorithm[J]. Journal of System Simulation, 2021, 33 (9): 2166- 2179
doi: 10.16182/j.issn1004731x.joss.20-0454
9 占翔南, 徐立云, 凌旭峰, 等 多深度四向穿梭车仓储系统调度优化[J]. 计算机集成制造系统, 2022, 28 (8): 2496- 2507
ZHAN Xiang-nan, XU Li-yun, LING Xu-feng, et al Scheduling optimization of multi-deep four-way shuttle warehousing system[J]. Computer Integrated Manufacturing Systems, 2022, 28 (8): 2496- 2507
10 张经天, 马莹, 翁迅, 等 四向穿梭车系统的提升机调度优化[J]. 北京邮电大学学报, 2022, 45 (1): 19- 25
ZHANG Jing-tian, MA Ying, WENG Xun, et al Optimization of lifts scheduling for four-way shuttle systems[J]. Journal of Beijing University of Posts and Telecommunications, 2022, 45 (1): 19- 25
11 周亚勤, 汪俊亮, 吕志军, 等 密集仓储环境下多AGV/RGV调度方法研究[J]. 机械工程学报, 2021, 57 (10): 245- 256
ZHOU Ya-qin, WANG Jun-liang, LYU Zhi-jun, et al Research on multi-AGV/RGV scheduling method in intensive storage environment[J]. Journal of Mechanical Engineering, 2021, 57 (10): 245- 256
doi: 10.3901/JME.2021.10.245
12 李睿智. 基于局部搜索策略的若干组合优化问题求解算法研究 [D]. 长春: 东北师范大学, 2017.
LI Rui-zhi. The algorithms for solving several combinational optimization problems based on local search strategies [D]. Changchun: Northeast Normal University, 2017.
13 FANDI W, KOULOUGHLI S, GHOMRI L Multi-shuttle AS/RS dimensions optimization using a genetic algorithm-case of the multi-aisle configuration[J]. The International Journal of Advanced Manufacturing Technology, 2022, 120 (1/2): 1219- 1236
14 隋振, 吴涛, 唐志国, 等 四向穿梭车仓储系统的多订单任务调度优化[J]. 吉林大学学报: 理学版, 2022, 60 (2): 332- 342
SUI Zhen, WU Tao, TANG Zhi-guo, et al Multi-order task scheduling optimization of four-way shuttle storage system[J]. Journal of Jilin University: Science Edition, 2022, 60 (2): 332- 342
15 季顺松, 黄炎焱, 张寒, 等 基于改进遗传算法的火力分配寻优模型研究[J]. 南京理工大学学报, 2023, 47 (1): 33- 40
JI Shun-song, HUANG Yan-yan, ZHANG Han, et al Research on optimization model of firepower allocation based on improved genetic algorithm[J]. Journal of Nanjing University of Science and Technology, 2023, 47 (1): 33- 40
16 潘伟, 丁立超, 黄枫, 等 基于混沌“微变异”自适应遗传算法[J]. 控制与决策, 2021, 36 (8): 2042- 2048
PAN Wei, DING Li-chao, HUANG Feng, et al Adaptive genetic algorithm based on chaos "Micro variation"[J]. Control and Decision, 2021, 36 (8): 2042- 2048
[1] 刘鹏,路庆昌,秦汉,崔欣. 道路网络多阶段抗灾能力优化模型构建与应用[J]. 浙江大学学报(工学版), 2024, 58(1): 96-108.
[2] 李煌,葛红娟,马莹,王永帅. 基于超平面NSGA-II的双输入双降压逆变器系统参数优化设计[J]. 浙江大学学报(工学版), 2023, 57(3): 606-615.
[3] 查浩,费少华,傅云,吕震,朱伟东. 基于EtherCAT总线的六维力传感器在线解耦技术[J]. 浙江大学学报(工学版), 2023, 57(10): 2042-2050.
[4] 赵永胜,李瑞祥,牛娜娜,赵志勇. 数字孪生驱动的机身形状控制方法[J]. 浙江大学学报(工学版), 2022, 56(7): 1457-1463.
[5] 孙宝凤,张新康,李根道,刘娇娇. 第II类机器人混流装配线的平衡与排序联合决策[J]. 浙江大学学报(工学版), 2022, 56(6): 1097-1106.
[6] 张昕莹,陈璐,杨雯惠. 考虑系统时变效应与预防性维护的平行机调度[J]. 浙江大学学报(工学版), 2022, 56(2): 408-418.
[7] 胡鸿昊,李秀娟,于俊锋,张清周,柳景青. 基于耦合模拟的污水管网入流入渗定量识别[J]. 浙江大学学报(工学版), 2022, 56(11): 2313-2320.
[8] 邹贻权,黄浩洲,夏绪勇,王鑫. 成本导向下基于遗传算法的曲面幕墙设计优化[J]. 浙江大学学报(工学版), 2022, 56(10): 2049-2056.
[9] 向胜涛,王达. 基于改进量子遗传算法的模型交互修正方法[J]. 浙江大学学报(工学版), 2022, 56(1): 100-110.
[10] 鞠飞,庄伟超,王良模,刘经兴,王群. 混合动力汽车经济型巡航的车速规划策略[J]. 浙江大学学报(工学版), 2021, 55(8): 1538-1547.
[11] 张铁,胡亮亮,邹焱飚. 基于混合遗传算法的机器人改进摩擦模型辨识[J]. 浙江大学学报(工学版), 2021, 55(5): 801-809.
[12] 季琳琳,王清威,周豪,郑美妹. 考虑顾客满意度的冷链水果路径优化[J]. 浙江大学学报(工学版), 2021, 55(2): 307-317.
[13] 齐平,束红. 智慧医疗场景下考虑终端移动性的任务卸载策略[J]. 浙江大学学报(工学版), 2020, 54(6): 1126-1137.
[14] 孟祥飞,王仁广,徐元利. 双行星排汽车纯电驱动模式的转矩分配策略[J]. 浙江大学学报(工学版), 2020, 54(11): 2214-2223.
[15] 粟序明,方成刚,潘裕斌,吴伟伟,李亚萍,朱浪. 变照度下的视觉测量系统误差建模[J]. 浙江大学学报(工学版), 2020, 54(10): 1929-1935.