Please wait a minute...
浙江大学学报(工学版)  2022, Vol. 56 Issue (12): 2487-2495    DOI: 10.3785/j.issn.1008-973X.2022.12.018
土木工程、水利工程     
弹簧刚度对嵌入式振荡水柱波能装置水动力性能的影响
王品捷(),邓争志*(),赵西增
浙江大学 海洋学院,浙江 舟山 316021
Effects of spring stiffness on hydrodynamics of nested oscillating water column wave energy device
Pin-jie WANG(),Zheng-zhi DENG*(),Xi-zeng ZHAO
Ocean College, Zhejiang University, Zhoushan 316021, China
 全文: PDF(2366 KB)   HTML
摘要:

提出嵌入方箱式防波堤的垂荡式振荡水柱(OWC)波能装置,利用开源计算流体动力学库OpenFOAM及工具箱waves2foam,对该波能装置的能量转换效率和水动力特性开展数值研究. 采用流体体积法(VOF)捕捉气液界面,利用Rigid-Body Dynamic网格技术求解垂荡运动. 在不同入射波频下,探究垂直线性弹簧约束(用无量纲弹簧刚度表示)对OWC波能装置的波能转换效率、反射系数、透射系数、能量耗散系数、相对压降、有效相对振荡幅度和相位差等的影响. 结果表明,结构物适当的垂荡运动有利于提升OWC装置在特定频率条件下的波能转换效率;振荡水柱和结构物间的运动相位差是决定能量转换效率的关键因素;为了提升能量转换效率,调节结构物的垂荡运动来控制相位差的措施是可行的.

关键词: 波浪能OpenFOAM振荡水柱 (OWC)波能转换效率方箱式防波堤    
Abstract:

A heave-only oscillating water column (OWC) wave energy device integrated in box-type breakwater was proposed. Using the open-source computational fluid dynamics platform OpenFOAM and toolbox waves2foam, the energy conversion efficiency and hydrodynamic properties of the wave energy device were investigated numerically. Fluid volume method (VOF) was used to capture gas-liquid interface and Rigid-Body Dynamic grid technology was employed to solve the heave motion. The effects of vertical linear spring restraints (expressed by dimensionless spring stiffness) on the wave energy conversion efficiency, reflection coefficient, transmission coefficient, energy dissipation coefficient, relative pressure drop, effective relative oscillation amplitude and phase difference of the OWC wave energy device under different incident wave frequencies were explored. Results show that the proper heave motion of the structure is conducive to improving the wave energy conversion efficiency of the OWC device at a specific frequency range. The motion phase difference between the oscillating water column and the structure is the key factor to determine the energy conversion efficiency. It is feasible to improve the wave energy conversion efficiency by controlling the phase difference with adjusting the heave motion of the structure.

Key words: wave energy    OpenFOAM    oscillation water column (OWC)    wave energy conversion efficiency    box-type breakwater
收稿日期: 2021-12-22 出版日期: 2023-01-03
CLC:  P 743.2  
基金资助: 浙江省自然科学基金-水利联合基金重大项目(LZJWD22E090002)
通讯作者: 邓争志     E-mail: opinkwang@foxmail.com;zzdeng@zju.edu.cn
作者简介: 王品捷(1997—),女,硕士生,从事水动力学研究. orcid.org/0000-0002-5823-8826. E-mail: opinkwang@foxmail.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
王品捷
邓争志
赵西增

引用本文:

王品捷,邓争志,赵西增. 弹簧刚度对嵌入式振荡水柱波能装置水动力性能的影响[J]. 浙江大学学报(工学版), 2022, 56(12): 2487-2495.

Pin-jie WANG,Zheng-zhi DENG,Xi-zeng ZHAO. Effects of spring stiffness on hydrodynamics of nested oscillating water column wave energy device. Journal of ZheJiang University (Engineering Science), 2022, 56(12): 2487-2495.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2022.12.018        https://www.zjujournals.com/eng/CN/Y2022/V56/I12/2487

图 1  垂荡式振荡水柱装置数值波浪水槽示意图
图 2  3种离散方案的网格示意图
图 3  不同网格下气室内液面高度与压强的数值收敛性结果
图 4  圆柱体运动位移与质心高度的比值随无量纲时间参数的变化
图 5  方箱振荡幅度与入射波幅的比值随无量纲频率参数的变化
图 6  不同求解器下的波能转换效率对比
图 7  无量纲弹簧刚度对能量转换效率的影响
图 8  无量纲弹簧刚度对反射系数的影响
图 9  无量纲弹簧刚度对透射系数的影响
图 10  无量纲弹簧刚度对能量耗散系数的影响
图 11  无量纲弹簧刚度对压降的影响
图 12  无量纲弹簧刚度对不同相对振幅的影响
图 13  无量纲弹簧刚度对相位差绝对值的影响
1 HEATH T V A review of oscillating water columns[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2012, 370: 235- 245
2 EVANS D V A theory for wave-power absorption by oscillating bodies[J]. Journal of Fluid Mechanics, 1976, 90 (2): 337- 362
3 EVANS D V Wave-power absorption by systems of oscillating surface pressure distributions[J]. Journal of Fluid Mechanics, 1982, 114: 481- 499
4 DENG Z, HUANG Z, LAW A W K Wave power extraction by an axisymmetric oscillating-water-column converter supported by a coaxial tube-sector-shaped structure[J]. Applied Ocean Research, 2013, 42: 114- 123
5 DENG Z, HUANG Z, LAW A W K Wave power extraction from a bottom-mounted oscillating water column converter with a V-shaped channel[J]. Proceedings of the Royal Society A: Mathematical Physical and Engineering Sciences, 2014, 470: 20140074
doi: 10.1098/rspa.2014.0074
6 ASHLIN S J, SUNDAR V, SANNASIRAJ S A Effects of bottom profile of an oscillating water column device on its hydrodynamic characteristics[J]. Renewable Energy, 2016, 96: 341- 353
doi: 10.1016/j.renene.2016.04.091
7 VYZIKAS T, DESHOULIÈRES S, BARTON M, et al Experimental investigation of different geometries of fixed oscillating water column devices[J]. Renewable Energy, 2017, 104: 248- 258
doi: 10.1016/j.renene.2016.11.061
8 NING D Z, GUO B M, WANG R Q, et al Geometrical investigation of a U-shaped oscillating water column wave energy device[J]. Applied Ocean Research, 2020, 97: 102105
doi: 10.1016/j.apor.2020.102105
9 NING D Z, KE S, MAYON R, et al Numerical investigation on hydrodynamic performance of an OWC wave energy device in the stepped bottom[J]. Frontiers in Energy Research, 2019, 7: 152
doi: 10.3389/fenrg.2019.00152
10 DENG Z, WANG C, YAO Y, et al Numerical simulation of an oscillating water column device installed over a submerged breakwater[J]. Journal of Marine Science and Technology, 2019, 25: 1- 14
11 ZHENG S M, ZHU G X, SIMMONDS D, et al Wave power extraction from a tubular structure integrated oscillating water column[J]. Renewable Energy, 2020, 150: 342- 355
doi: 10.1016/j.renene.2020.01.008
12 QU M, YU D Y, DOU Z H, et al Design and experimental study of a pile-based breakwater integrated with OWC chamber[J]. China Ocean Engineering, 2021, 35 (3): 443- 453
doi: 10.1007/s13344-021-0041-0
13 TRIVEDI K, KOLEY S Mathematical modeling of breakwater-integrated oscillating water column wave energy converter devices under irregular incident waves[J]. Renewable Energy, 2021, 178: 403- 419
14 WANG C, DENG Z, WANG P, et al Wave power extraction from a dual oscillating-water-column system composed of heave-only and onshore units[J]. Energies, 2019, 12: 1742
15 郭权势, 邓争志, 王晓亮, 等 垂荡双气室振荡水柱波能装置水动力特性研究[J]. 力学学报, 2021, 53 (9): 2515- 2527
GUO Quan-shi, DENG Zheng-zhi, WANG Xiao-liang, et al Hydrodynamics of a dual-chamber OWC wave energy converter in heaving motion[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53 (9): 2515- 2527
16 任翔, 邓争志, 程鹏达 带纵摇前墙的新型振荡水柱式波浪能装置转换效率以及水动力性能数值研究[J]. 海洋工程, 2021, 39 (5): 66- 77
REN Xiang, DENG Zheng-zhi, CHENG Peng-da Numerical simulation on the extraction efficiency and hydrodynamic performance of an OWC device with a pitching front-wall[J]. The Ocean Energy, 2021, 39 (5): 66- 77
doi: 10.16483/j.issn.1005-9865.2021.05.007
17 GUO B, NING D, WANG R, et al Hydrodynamics of an oscillating water column WEC-breakwater integrated system with a pitching front-wall[J]. Renewable Energy, 2021, 176: 67- 80
18 DENG Z, WANG P, CHENG P Hydrodynamic performance of an asymmetry OWC device mounted on a box-type breakwater[J]. Frontiers in Marine Science, 2021, 8: 677030
doi: 10.3389/fmars.2021.677030
19 DENG Z, WANG C, WANG P, et al Hydrodynamic performance of an offshore-stationary OWC device with a horizontal bottom plate: experimental and numerical study[J]. Energy, 2019, 187: 115941
doi: 10.1016/j.energy.2019.115941
20 HIRT C W, NICHOLS B D Volume of fluid (VOF) method for the dynamics of free boundaries[J]. Journal of Computational Physics, 1981, 39 (1): 201- 225
doi: 10.1016/0021-9991(81)90145-5
21 DESHPANDE S S, ANUMOLU L, TRUJILLO M F Evaluating the performance of the two-phase flow solver interFoam[J]. Computational Science and Discovery, 2012, 5: 014016
doi: 10.1088/1749-4699/5/1/014016
22 WELLER H G, TABOR G, JASAK H, et al A tensorial approach to computational continuum mechanics using object-oriented techniques[J]. Computers in Physics, 1998, 12 (6): 620- 631
doi: 10.1063/1.168744
23 RUSCHE, HENRIK. Computational fluid dynamics of dispersed two-phase flows at high phase fractions [D]. London: Imperial College London, 2003.
24 JACOBSEN N G, FUHRMAN D R, FREDSØE J A wave generation toolbox for the open-source CFD library: OpenFoam®[J]. International Journal for Numerical Methods in Fluids, 2011, 70 (9): 1073- 1088
25 GODA Y, SUZUKI Y Estimation of incident and reflected waves in random wave experiments[J]. Plos One, 1976, 4 (9): 73- 73
26 MASKELL S J, URSELL F The transient motion of a floating body[J]. Journal of Fluid Mechanics, 1970, 44 (2): 303- 313
27 ITO S. Study of the transient heave oscillation of a floating cylinder [D]. Cambridge: Massachusetts Institute of Technology, 1977: 19-26.
28 BRIOMSMA N, PAULSEN B T, JACOBSEN N G Validation and application of a fully nonlinear numerical wave tank for simulating floating offshore wind turbines[J]. Ocean Engineering, 2018, 147: 647- 658
29 MARUO H On the increase of the resistance of a ship in rough seas[J]. Journal of Zosen Kiokai, 1957, 1957 (101): 33- 39
30 NOJIRI N, MURAYAMA K A study on the drift force on two-dimensional floating body in regular waves[J]. Transactions of the West-Japan Society of Naval Architects, 1975, 51: 131- 52
31 KOO W, KIM M H Freely floating-body simulation by a 2D fully nonlinear numerical wave tank[J]. Ocean Engineering, 2004, 31 (16): 2011- 2046
32 LUO Y, WANG Z, PENG G, et al Numerical simulation of a heave-only floating OWC (oscillating water column) device[J]. Energy, 2014, 76: 799- 806
[1] 许从昊,姚宇,郭婷,邓争志. 排桩式波浪能发电装置附近流场特性研究[J]. 浙江大学学报(工学版), 2021, 55(7): 1308-1316.
[2] 王辰,邓争志,茆大炜. 台阶式地形上双垂板透空系统的水动力学特性[J]. 浙江大学学报(工学版), 2019, 53(2): 336-346.
[3] 胡杭辉,邓争志,姚炎明,赵西增. 离岸式振荡水柱波能装置的理论及数值研究[J]. 浙江大学学报(工学版), 2019, 53(2): 325-335.
[4] 林勇刚,许建强,刘宏伟,李伟. 基于数字液压缸组的波浪能装置压力匹配[J]. 浙江大学学报(工学版), 2019, 53(10): 1892-1897.
[5] 吕沁, 李德堂, 唐文涛, 曹伟男,金豁然, 胡星辰. 基于液压传动的振荡浮子式波浪发电系统设计[J]. 浙江大学学报(工学版), 2016, 50(2): 234-240.
[6] 蒋昌波, 邓涯, 姚宇, 邓斌. 孤立波作用下排柱附近流动特性数值分析[J]. 浙江大学学报(工学版), 2015, 49(8): 1441-1447.