Please wait a minute...
浙江大学学报(工学版)
机械工程     
基于液压传动的振荡浮子式波浪发电系统设计
吕沁1,2, 李德堂1,2, 唐文涛1,2, 曹伟男1,2,金豁然1,2, 胡星辰1,2
1.浙江海洋学院 船舶与海洋工程学院,浙江 舟山 316022;2.浙江省近海海洋工程技术重点实验室,浙江 舟山 316022
Design oscillating buoy wave power generating system based on hydraulic transmission
LYU Qin1,2, LI De tang1,2, TANG Wen tao1,2, CAO Wei nan1,2, JIN Huo ran1,2, HU Xing chen1,2
1. School of Naval Architecture and Ocean Engineering, Zhejiang Ocean University, Zhoushan, Zhejiang 316022; 2. Key Laboratory of Offshore Engineering Technology of Zhejiang Province
 全文: PDF(1900 KB)   HTML
摘要:
为了使波浪发电系统具有传动平稳、调速方便等优点,设计基于液压传动的振荡浮子式波浪能发电装置.该装置通过浮子、波浪板与群组油缸技术获取波浪能量;使用蓄能稳压的方法保证液压系统压力稳定;通过调节变量液压马达的排量达到发电机电量输出稳定.给出该发电系统的数学模型,应用AMESim软件对液压发电系统进行仿真,通过平台实海况试验进行验证.仿真结果和试验结果表明,该发电系统不仅可以保证液压系统压力稳定,还可以达到发电机输出功率稳定,验证了采用液压传动方法的振荡浮子式波浪发电系统设计的合理性.
Abstract:

A wave power generating device based on hydraulic transmission was designed in order to make the system have advantages of transmission smooth and speed convenience. The buoys, wave plates and groups of hydraulic cylinder could obtain wave energy. Hydraulic system pressure stability and generator power output stability could be separately realized by accumulator and adjusting the displacement of the volume adjustable hydraulic motor. A mathematical model for the wave power generating system was given and a computer simulation was conducted by AMESim software. An experiment of wave power generating platform was conducted in actual sea conditions. The computer simulation and experimental results show that the system can ensure the hydraulic system pressure stability and the generator power output stability, which validates the rationality of the oscillating buoy wave power generating system based on hydraulic transmission.

出版日期: 2016-02-01
:  TK 79  
基金资助:
国家海洋局海洋可再生能源专项资金资助项目(ZJME2011BL04)|上海交通大学海洋工程国家重点实验室研究基金资助项目(1205);舟山市科技局资助项目(2014C41013);2014年国家海洋经济创新发展区域示范项目.
通讯作者: 李德堂,男,教授级高工,硕导.ORCID: 0000 0002 2255 2215.     E-mail: lidetang2008@163.com
作者简介: 吕沁(1990—),男,硕士生,从事海洋新能源开发研究.ORCID: 0000 0002 9437 1376. E-mail: 812514014@qq.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

吕沁, 李德堂, 唐文涛, 曹伟男,金豁然, 胡星辰. 基于液压传动的振荡浮子式波浪发电系统设计[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008-973X.2016.02.006.

LYU Qin, LI De tang, TANG Wen tao, CAO Wei nan, JIN Huo ran, HU Xing chen. Design oscillating buoy wave power generating system based on hydraulic transmission. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008-973X.2016.02.006.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2016.02.006        http://www.zjujournals.com/eng/CN/Y2016/V50/I2/234

[1] 李威,刘靖飙,杨戈尔,等.浮力摆式波浪能发电装置液压系统仿真分析[C]∥第3届中国海洋可再生能源发展年会暨论坛、哈尔滨:海洋出版社,2014: 46-57.
LI Wei, LIU Jing biao, YANG Ge er, et al. Simulation analysis of hydraulic system of inverse pendulum wave Power Generating Device [C]∥Proceedings of the 3th National Conference on Marine Renewable Energy. Haerbin: China Ocean Press,2014: 46-57.
[2] GERALD L. WALTER R. Harvesting ocean energy[M]. Paris :The Unesco Press , 1981: 17-21.
[3] 游亚戈,李伟,刘伟民,等.海洋能发电技术的发展现状与前景[J].电力系统自化,2010,34(14): 1-12.
YOU Ya ge, LI Wei, LIU Wei min, et al. Development status and perspective of marine energy conversion systems [J]. Automation of Electric Power Systems, 2010, 34(14):1-12.
[4] 王传昆.海洋能资源分析方法及储量评估[M].北京:海洋出版社,2009: 86-95.
[5] KOTOWICZ J,BARTELA L.Wave energy utilization: a review of the technologies [J]. Renewable and Sustainable Energy Reviews, 2010,14(3): 899-918.
[6] 鲍经纬,李伟,张大海,等.基于液压传动的蓄能稳压浮力摆式波浪能发电系统分析[J].电力系统自动化,2012,36(14): 205-209.
BAO Jing Wei, LI Wei, ZHANG Da hai, et al. Analysis of an inverse pendulum wave power generation system with pressure maintaining storage based on hydraulic Transmission[J]. Automation of Electric Power Systems, 2012, 36(14): 205-209.
[7] 游亚戈,盛松伟,吴必军.海洋波浪能发电技术现状与前景[C]∥第十五届中国海洋(岸)工程学术讨论会论文集(上).太原:海洋出版社, 2011: 9-16.
YOU Ya ge, SHEN Song wei, WU Bi jun. Development status and perspective of marine wave energy conversion systems [C]∥Proceedings of the 15th National Conference on Ocean (Coastal) Engineering(Volume 1 of 3)、 Taiyuan: China Ocean Press,2011: 9-16.
[8] 张丽珍,羊晓晟,王世明,等.海洋波浪能发电装置的研究现状与发展前景[J].湖北农业,2010,50(1): 161-164.
ZHANG Li zhen, YANG Xiao sheng, WANG Shi ming, et al. Research status developing prospect of ocean wave power generation device [J]. Hubei Agricultural Sciences, 2011, 50(1): 161-164.
[9] 叶钦,杨忠良,施伟勇.浙江近海波浪能资源的初步研究[J].海洋学研究,2012,30(4): 13-19.
YE Qin, YANG Zhong Liang, SHI Wei yong. A preliminary study of the wave energy resources in the sea adjacent to Zhejiang [J]. Journal of Marine Sciences, 2012, 30(4): 13-19.
[10] 鲍经纬,李伟,张大海,等.基于液压传动的浮力摆式波浪能发电系统稳压恒频控制[J].电力系统自动化,2013,37(9): 18-22.
BAO Jing wei, LI Wei, ZHANG Da hai, et al. A control method for inverse pendulum wave power generation system based on hydraulic transmission to maintain pressure and ensure constant frequency [J]. Automation of Electric Power Systems, 2013, 37(9): 18-22.
[11] 吴必军, 邓赞高, 游亚戈.基于波浪能的蓄能稳压独立发电系统仿真[J].电力系统自动化,2007, 31(5):50-56.
WU Bi jun, DENG Zan gao, YOU Ya ge. Simulation of pressure maintaining storage isolated generating system based on wave energy [J]. Automation of ElectricPower Systems, 2007, 31(5): 50-56.
[12] ZHANG D H, LI W, LIN Y G. Wave energy in China: current status and perspective [J].Renewable Energy, 2009, 34(10): 2089-2092.
[13] WU F, ZHANG X P, JU P.Application of battery energy storage in the direct drive wave energy conversion farm integrated in to power grid [J].电力系统自动化, 2010, 34(14): 31-36.
WU F, ZHANG X P, JU P.Application of Battery energy storage in the direct drive wave energy conversion farm integrated into power grid[J]. Automation of ElectricPower Systems, 2010, 34(14):31-36.
[14] 单长飞.单浮子式波浪能发电装置的水动力性能研究[D].镇江:江苏科技大学,2013.
SHAN Cang fei. Hydrodynamic performance research of a single float type wave power conversion device[D]. Zhenjiang: Jiangsu University of Science and Technology, 2013.
[15] 李仕成.振荡浮子式波能转换装置性能的实验研究[D].大连:大连理工大学,2006.
LI Shi cheng. Experimental Investigation on the Performance of the oscillating buoy wave power device[D]. Dalian: Dalian University of Technology,2006.
[16] 石茂顺,刘宏伟,李伟,等.基于液压变压器原理的海流发电液压传动系统[J].浙江大学学报:工学版,2014,48(5):764-769.
SHI Mao shun, LIU Hong Wei, LI Wei, et al. Tidal current turbine hydraulic transmission system based on hydraulic transformer [J]. Journal of Zhejiang University: Engineering Science, 2014, 48(5): 764-769.
[17] MURRENHOFF H, 吴根茂.液压控制技术发展趋势(I)[J]工程设计,1997,3: 20-29.
MURRENHOFF H, WU Gen mao. Development trends in fluid power(I)[J].Ko Nstruktion Engineering Design, 1997, 3: 20-29.
[18] 彭天好,徐兵,杨华勇.变频液压技术的发展与研究综述[J].浙江大学学报:工学版,2004,38(2):215-221.
PENG Tian hao, XU Bing, YANG Hua yong. Development and research overview on variable frequency hydraulic technology [J]. Journal of Zhejiang University: Engineering Science, 2004,38(2):215-221.
[19] 刘绪儒, 黄连忠, 林煌翔,等.基于AMESim船舶风翼回转液压系统仿真分析[J].液压气动与密封, 2013(4): 30-34.
LIU Xu ru, HUANG Lian zhong, LIN Huang xiang, et al.Wing rotary hydraulic system simulation analysis of the ship based on the AMESim [J]. Hydraulics Pneumatics &Seals, 2013(4): 30-34.
[20] 惠纪庄,纪真,邹亚科.基于AMESim的钻井泵液压系统动态特性仿真[J].石油机械,2009,37(8): 2123,47.
HUI Ji zhuang, JI Zhen, ZOU Ya ke. AMESim based simulation of the dynamic characteristics of the drilling pump’s hydraulic system[J]. China Petroleum Machinery, 2009, 37(8): 2123,47.

[1] 刘海宾, 王勇, 马鹏磊, 谢玉东. 基于平行式振荡翼系统参数耦合分析[J]. 浙江大学学报(工学版), 2017, 51(1): 153-159.
[2] 李金生, 张力, 丁林, 杨仲卿. 流道内分隔板长度对方柱绕流特性的影响[J]. 浙江大学学报(工学版), 2014, 48(12): 2172-2180.
[3] 赵飞, 杨帅, 吴俊, 吴淳杰, 吴大转. 基于Fluent的压力能交换器端面液膜支撑机理分析[J]. 浙江大学学报(工学版), 2014, 48(8): 1528-1533.