Please wait a minute...
浙江大学学报(工学版)
能源工程     
流道内分隔板长度对方柱绕流特性的影响
李金生, 张力, 丁林, 杨仲卿
重庆大学 低品位能源利用技术及系统教育部重点实验室,重庆 400044
Effect of length of splitter plate on flow over a square cylinder in flow channel
LI Jin-sheng, ZHANG Li, DING Lin, YANG Zhong-qing
Key Laboratory of Low-grade Energy Utilization Technologies and Systems of Ministry of Education, Chongqing University, Chongqing 400044, China
 全文: PDF(2674 KB)   HTML
摘要:
为了揭示流道内方柱-分隔板钝体的绕流特性及分隔板长度对尾迹脱涡的影响,对低雷诺数(Re=150)下阻塞比为1/6的流道内的方柱-分隔板结构进行数值研
究,讨论方柱和分隔板的受力及自由剪切层的变化趋势.结果表明:在有限流道内,分隔板对方柱的尾流结构产生了明显的影响,抑制了尾流区剪切层之间的相互作
用,并在一定范围内使方柱阻力减小;随着分隔板长度L的变化(0D~6D,D为方柱边长),流动特性呈现出3个不同阶段,即当0≤L/D≤1.00时,随着板长度的增加,自
由剪切层沿顺流方向逐渐下移;当1.25≤L/D≤4.50时,自由剪切层在板尾端卷起并在分隔板尾迹边缘清晰地出现二次涡;当L/D≥4.75时,分隔板完全阻断剪切层
之间的相互作用,使自由剪切层再次附着在分隔板上.
Abstract:
In order to reveal the effect of length of splitter plate on the flow and wake vortex-shedding characteristics when fluid flows
over a square-plate cylinder, a numerical study of square cylinder with splitter plate is conducted at low Reynolds number (Re=150) in flow
channel with blockage ratio 1/6. The variation trends of the free shear layers and the fluid force on the square cylinder and plate were
discussed. The results show that the splitter plate has significant effects on the flow downstream of the square cylinder in the finite flow
channel. The wake interactions between the shear layers are inhibited by the plate. And the drag force on the square cylinder decreases in a
range of the length of the plate L. When L is varied systematically from 0D to 6D(D is the side length of the square cylinder), the flow
characteristics can be divided into three regimes. For 0≤L/D≤1.00, the free shear layers are convected further downstream before rolling up
when the plate length increases. The shear layers start to roll up and move toward the trailing edge when 1.25≤L/D≤4.50, and a secondary
vortex is clearly observed around the trailing edge of the splitter plate. For L/D≥4.75, the free shear layers reattach to the splitter
plate and the interaction between shear layers is absolutely blocked by the splitter plate.
出版日期: 2014-12-01
:  O 357.1  
基金资助:

高等学校博士学科点专项科研基金优先发展领域资助项目(20120191130003)

通讯作者: 张力,男,教授,博导     E-mail: lizhang@cqu.edu.cn
作者简介: 李金生 (1989—),男,硕士生,主要从事气固多相流动的研究.E-mail: legenoy@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

李金生, 张力, 丁林, 杨仲卿. 流道内分隔板长度对方柱绕流特性的影响[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008-973X.2014.12.010.

LI Jin-sheng, ZHANG Li, DING Lin, YANG Zhong-qing. Effect of length of splitter plate on flow over a square cylinder in flow channel. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008-973X.2014.12.010.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2014.12.010        http://www.zjujournals.com/eng/CN/Y2014/V48/I12/2172

[1] APELT C J, WEST G S. The effects of wake splitter plates on bluff-body flow in the range 104 < Re<5×104. Part 2[J]. Journal of Fluid Mechanics Digital Archive, 1975, 71(01): 145-160.
[2] KAWAI H. Discrete vortex simulation for flow around a circular cylinder with a splitter plate[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1990, 33(1): 153-160.
[3] TIWARI S, CHAKRABORTY D, BISWAS G, et al. Numerical prediction of flow and heat transfer in a channel in the presence of a built-in circular tube with and without an integral wake splitter[J]. International Journal of Heat and Mass Transfer, 2005, 48(2): 439-453.
[4] RAZAVI S, FARHANGMEHR V, BARAR F. Impact of a splitter plate on flow and heat transfer around circular cylinder at low reynolds numbers
[J]. Journal of Applied Sciences, 2008, 8(7): 1286-1292.
[5] 张力, 丁林. 钝体绕流的分隔板控制技术研究进展[J]. 力学进展, 2011, 41(4): 391-399.
ZHANG Li, DING Lin. Review on the control of flow over a bluff body using splitter plates[J]. Advances in Mechanics, 2011, 41(4): 391-399.
[6] KWON K, CHOI H. Control of laminar vortex shedding behind a circular cylinder using splitter plates[J]. Physics of Fluids, 1996, 8 (2): 479-486.
[7] 丁林,张力,杨仲卿.高雷诺数时分隔板对圆柱涡致振动的影响[J].机械工程学报, 2013, 49(14): 133-139.
DING Lin, ZHANG Li, YANG Zhong-qing. Effect of splitter plate on vortex-induced vibration of circular cylinder at high Reynolds number[J]. Journal of Mechanical Engineering, 2013, 49(14): 133-139.
[8] ALI M S M, DOOLAN C J, WHEATLEY V. Low Reynolds number flow over a square cylinder with a splitter plate[J]. Physics of Fluids, 2011, 23(3): 336021-3360212.
[9] 明晓, 戴昌辉, 吴根兴. 圆柱体绕流分离区流动特性[J]. 南京航空航天大学学报, 1987, 19(1): 48-54.
MING xiao, DAI chang-hui, WU gen-xin. The characteristies of separated flow around a circular cylinder[J]. Journal of Nanjing Aeronautical Institute, 1987, 19(1): 48-54.
[10] GRIFFITH M D, LEONTINI J, THOMPSON M C, et al. Vortex shedding and three-dimensional behaviour of flow past a cylinder confined in a channel[J]. Journal of Fluids and Structures, 2011, 27(5): 855-860.
[11] 桑文慧, 孙志强, 周孑民. 有限流道内低雷诺数二维圆柱绕流数值模拟[J]. 中南大学学报 :自然科学版, 2012, 43(3): 1166-1170.
SANG Wen-hui, SUN Zhi-qiang, ZHOU Jie-min. Numerical simulation of two-dimensional flow around a circular cylinder at low Reynolds numbers in finite channel[J]. Journal of Central South University :Science and Technology, 2012, 43(3): 1166-1170.
[12] 任安禄, 罗雄平, 邵雪明, 等. 圆柱绕流涡致振动的平面湍流数值模拟[J]. 浙江大学学报: 工学版, 2008, 42(7): 1111-1114.
REN An-lu, LUO Xiong-ping, SHAO Xue-ming, et al. Simulation of vortex induced vibration of turbulent flow around a circular cylinder by plane turbulent models[J]. Journal o f Zhejiang University : Engineering Science, 2008, 42(7): 1111-1114.
[13] YANG Y T, CHEN C H. Numerical simulation of turbulent fluid flow and heat transfer characteristics of heated blocks in the channel with an oscillating cylinder[J]. International Journal of Heat and Mass Transfer, 2008, 51(7): 1603-1612.
[14] FU W S, TONG B H. Numerical investigation of heat transfer characteristics of the heated blocks in the channel with a transversely oscillating cylinder[J]. International Journal of Heat and Mass Transfer,  2004, 47(2): 341-351.
[15] DAVIS R W, MOORE E F, PURTELL L P. A numerical-experimental study of confined flow around rectangular cylinders[J]. Physics of Fluids, 1984, 27 (1): 46-59.
[16] 刘丽芳, 陆道纲. 不同流道宽度下流体掠过方柱的旋涡脱落特性数值模拟[J]. 原子能科学技术, 2010, 44(012): 1436-1440.
LIU Li-fang, LU Dao-gang. Numerical simulation on vortex shedding character of single square cylinder in flowing fluid with different widths of channel[J]. Atomic Energy Science and Technology, 2010, 44(012): 1436-1440.
[17] RAISEE M, JAFARI A, BABAEI H, et al. Two-dimensional prediction of time dependent, turbulent flow around a square cylinder confined in a channel[J]. International Journal for Numerical Methods in Fluids, 2010, 62(11): 1232-1263.
[18] HASHEMIAN S M, RAHNAMA M, FARHADI M. Large eddy simulation of turbulent heat transfer in a channel with a square cylinder[J]. Heat Transfer Engineering, 2012, 33(12): 1052-1062.
[19] KIM D H, YANG K S, SENDA M. Large eddy simulation of turbulent flow past a square cylinder confined in a channel[J]. Computers & fluids, 2004, 33(1): 81-96.
[20] LEONARD B P. A stable and accurate convective modelling procedure based on quadratic upstream interpolation[J]. Computer Methods in Applied Mechanics and Engineering, 1979, 19(1): 59-98.
[21] BUNGARTZ H J, SCHFER M. Fluid-structure interaction: modelling, simulation, optimisation[M]. Germany: Springer Berlin Heidelberg, 2006.
[22] ALI M S M, DOOLAN C J, WHEATLEY V. Grid convergence study for a two-dimensional simulation of flow around a square cylinder at a low
reynolds number[C]∥Seventh International Conference on CFD in the Minerals and Process Industries, CSIRO.Melbourne, Australia: CSIRO, 2009.
[23] SOHANKAR A, NORBERG C, DAVIDSON L. Simulation of three-dimensional flow around a square cylinder at moderate Reynolds numbers[J]. Physics of Fluids, 1999, 11: 288.
[24]  OKAJIMA A. Strouhal numbers of rectangular cylinders[J]. Journd of Fluid Mechanics, 1982, 123: 379-398.
[25] SOHANKAR A, NORBERG C, DAVIDSON L. Low-Reynolds-number flow around a square cylinder at incidence: study of blockage, onset of vortex shedding and outlet boundary condition[J]. International Journal for Numerical Methods in Fluids, 1998, 26(1): 39-56.
[26] WILLIAMSON C H K, GOVARDHAN R. A brief review of recent results in vortex-induced vibrations[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2008, 96(6): 713-735.
No related articles found!