Please wait a minute...
浙江大学学报(工学版)  2021, Vol. 55 Issue (7): 1308-1316    DOI: 10.3785/j.issn.1008-973X.2021.07.010
土木工程、水利工程     
排桩式波浪能发电装置附近流场特性研究
许从昊1,2(),姚宇1,2,*(),郭婷2,邓争志3
1. 水能资源利用关键技术湖南省重点实验室,湖南 长沙 410014
2. 长沙理工大学 水利工程学院,湖南 长沙 410114
3. 浙江大学 海洋学院,浙江 舟山 316021
Study of flow characteristics around row of oscillating water column pile under regular waves
Cong-hao XU1,2(),Yu YAO1,2,*(),Ting GUO2,Zheng-zhi DENG3
1. Hunan Provincial key Laboratory of key Technology on Hydropower Development, Changsha 410014, China
2. School of Hydraulic Engineering, Changsha University of Science & Technology, Changsha 410114, China
3. Ocean College, Zhejiang University, Zhoushan 316021, China
 全文: PDF(1847 KB)   HTML
摘要:

基于雷诺时均Navier-Stokes方程和k?ω湍流模型,研究单排桩式振荡水柱式波浪能发电装置在规则波作用下的桩基附近流场特性. 通过物理模型实验验证所建数值波浪水槽的准确性. 模拟规则波作用下装置附近的流场特性,分析装置附近的涡特征以及其对装置附近泥沙冲刷情况的潜在影响. 结果表明,测试工况下,在桩式振荡水柱装置桩柱体的桩基附近观察到马蹄涡和尾涡现象,马蹄涡强度随着Keulegan–Carpenter(KC)数的增大而减小,尾涡强度随着KC数的增大而增大. 马蹄涡因强度过小,在模拟的KC数范围内不是装置桩基泥沙冲刷的主要因素,高强度的尾涡很可能成为装置桩基附近泥沙起动、输运和冲刷的重要影响因素.

关键词: 波浪能排柱尾涡Navier-Stokes方程规则波    
Abstract:

A numerical wave tank was developed based on Reynolds-Averaged Navier-Stokes equations with k? $\omega$ turbulence closure. The accuracy of numerical model was first verified by laboratory experiments. Then, the model was used to simulate the flow field characteristics near the device under the effect of regular waves. The vortex characteristics and its implication to local erosion mechanism were analyzed. Results show that under tested conditions, a concave horseshoe vortex is formed at the toe of the oscillating water column pile and wake vortices are formed around the structure. The strength of the horseshoe vortices decreases with the increase of the Keulegan-Carpenter (KC) number, and the strength of the wake vortices increases with the increase of the KC number. The horseshoe vortices are too weak to be the main factor in sediment scour at the range of KC number in this simulation, while the strong wake vortices are likely to be a main control factor of sediment initiation of motion, transport and scour near the pile foundation.

Key words: wave energy    row of piles    wake vortices    Navier-Stokes equations    regular wave
收稿日期: 2020-05-16 出版日期: 2021-07-05
CLC:  TV 139.2  
基金资助: 水能资源利用关键技术湖南省重点实验室开放研究基金资助项目(PKLHD201706)
通讯作者: 姚宇     E-mail: conghaox@163.com;yaoyu821101@163.com
作者简介: 许从昊(1989—),男,讲师,从事波浪能装置相关研究. orcid.org/0000-0002-4225-2973. E-mail: conghaox@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
许从昊
姚宇
郭婷
邓争志

引用本文:

许从昊,姚宇,郭婷,邓争志. 排桩式波浪能发电装置附近流场特性研究[J]. 浙江大学学报(工学版), 2021, 55(7): 1308-1316.

Cong-hao XU,Yu YAO,Ting GUO,Zheng-zhi DENG. Study of flow characteristics around row of oscillating water column pile under regular waves. Journal of ZheJiang University (Engineering Science), 2021, 55(7): 1308-1316.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2021.07.010        https://www.zjujournals.com/eng/CN/Y2021/V55/I7/1308

图 1  实验布置与数值模型网格设置示意
图 2  数值模拟与实验测量的液面历时曲线对比
图 3   $T = 0.{\rm{7 }}\;{\rm{s}} $工况下不同相位时刻的立面流场
图 4   $T = 1.{\rm{5 }}\;{\rm{s}} $工况下不同相位时刻的立面流场
图 5  T = 0.7 s工况下不同相位时刻的平面流场
图 6  T = 1.5 s工况下不同相位时刻的平面流场
T/s KC数 S1 S2 S3
0.7 1.02 0.061 4 0.0130 0.003 78
1.5 1.53 1.286 0 0.4830 0.003 21
表 1  不同工况下的马蹄涡和尾涡强度
1 HENRIQUES J C C, CÂNDIDO J J, PONTES M T, et al Wave energy resource assessment for a breakwater-integrated oscillating water column plant at Porto, Portugal[J]. Energy, 2013, 63: 52- 60
doi: 10.1016/j.energy.2013.09.063
2 王鹏, 邓争志, 王辰, 等 振荡水柱式防波堤的水动力特性[J]. 浙江大学学报: 工学版, 2019, 53 (12): 2335- 2341
WANG Peng, DENG Zheng-zhi, WANG Chen, et al Hydrodynamic characteristics of oscillating water column type breakwater[J]. Journal of Zhejiang University: Engineering Science, 2019, 53 (12): 2335- 2341
3 HE F, HUANG Z Hydrodynamic performance of pile-supported OWC-type structures as breakwaters: an experimental study[J]. Ocean Engineering, 2014, 88: 618- 626
doi: 10.1016/j.oceaneng.2014.04.023
4 XU C, HUANG Z A dual-functional wave-power plant for wave-energy extraction and shore protection: a wave-flume study[J]. Applied Energy, 2018, 229: 963- 976
doi: 10.1016/j.apenergy.2018.08.005
5 HE F, LI M, HUANG Z An experimental study of pile-supported OWC-type breakwaters: energy extraction and vortex-induced energy loss[J]. Energies, 2016, 9 (7): 540
doi: 10.3390/en9070540
6 DENG Z, HUANG Z, LAW A W K Wave power extraction by an axisymmetric oscillating water-column converter supported by a coaxial tube-sector-shaped structure[J]. Applied Ocean Research, 2013, 42: 114- 123
doi: 10.1016/j.apor.2013.05.006
7 DENG Z, HUANG Z, LAW A Wave power extraction from a bottom-mounted oscillating water column converter with a V-shaped channel[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2014, 470 (2167): 20140074
doi: 10.1098/rspa.2014.0074
8 XU C, HUANG Z, DENG Z Experimental and theoretical study of a cylindrical oscillating water column device with a quadratic power take-off model[J]. Applied Ocean Research, 2016, 57: 19- 29
doi: 10.1016/j.apor.2016.02.003
9 XU C, HUANG Z Three-dimensional CFD simulation of a circular OWC with a nonlinear power-takeoff: model validation and a discussion on resonant sloshing inside the pneumatic chamber[J]. Ocean Engineering, 2019, 176: 184- 198
doi: 10.1016/j.oceaneng.2019.02.010
10 DEY S, RAIKAR R V Characteristics of horseshoe vortex in developing scour holes at piers[J]. Journal of Hydraulic Engineering, 2007, 133 (4): 399- 413
doi: 10.1061/(ASCE)0733-9429(2007)133:4(399)
11 齐梅兰, 石粕辰 局部冲刷坑发展过程的泥沙输运特性[J]. 水利学报, 2018, 49 (12): 1471- 1480
QI Mei-lan, SHI Po-chen Study on the mechanism of water-sediment interaction in the scouring process around a pile[J]. Journal of Hydraulic Engineering, 2018, 49 (12): 1471- 1480
12 RUSCHE H. Computational fluid dynamics of dispersed two-phase flows at high phase fractions[D]. London: Imperial College London, 2003.
13 JACOBSEN N G, FUHRMAN D R, FREDSØE J A wave generation toolbox for the open-source CFD library: OpenFoam®[J]. International Journal for numerical methods in fluids, 2012, 70 (9): 1073- 1088
doi: 10.1002/fld.2726
14 WILCOX D C Formulation of the kω turbulence model revisited [J]. AIAA journal, 2008, 46 (11): 2823- 2838
doi: 10.2514/1.36541
15 PERRY A E, FAIRLIE B D Critical points in flow patterns[J]. Advances in Geophysics, 1974, 18: 299- 315
16 SUMER B M, FREDSØE J Wave scour around a large vertical circular cylinder[J]. Journal of Waterway, Port, Coastal, and Ocean Engineering, 2001, 127 (3): 125- 134
doi: 10.1061/(ASCE)0733-950X(2001)127:3(125)
17 DARGAHI B The turbulent flow field around a circular cylinder[J]. Experiments in Fluids, 1989, 8 (1-2): 1- 12
doi: 10.1007/BF00203058
[1] 林勇刚,许建强,刘宏伟,李伟. 基于数字液压缸组的波浪能装置压力匹配[J]. 浙江大学学报(工学版), 2019, 53(10): 1892-1897.
[2] 吕沁, 李德堂, 唐文涛, 曹伟男,金豁然, 胡星辰. 基于液压传动的振荡浮子式波浪发电系统设计[J]. 浙江大学学报(工学版), 2016, 50(2): 234-240.