Please wait a minute...
浙江大学学报(工学版)  2021, Vol. 55 Issue (7): 1299-1307    DOI: 10.3785/j.issn.1008-973X.2021.07.009
土木工程、水利工程     
基于剪切带扩展法的海底斜坡稳定性分析
沈佳轶1(),库猛1,王立忠2,3
1. 浙江大学 海洋学院,浙江 舟山 316000
2. 浙江大学 建筑工程学院,浙江 杭州 310058
3. 浙江大学 浙江省海洋岩土工程与材料重点实验室,浙江 杭州 310058
Stability analyses of submarine slopes based on shear band propagation method
Jia-yi SHEN1(),Meng KU1,Li-zhong WANG2,3
1. Ocean College, Zhejiang University, Zhoushan 316000, China
2. College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China
3. Key Laboratory of Offshore Geotechnics and Material of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
 全文: PDF(1093 KB)   HTML
摘要:

简介剪切带扩展法(SBP)的原理及其在海底滑坡稳定性分析的应用;以舟山六横岛典型海底斜坡为分析案例,开展基于高斯函数的SBP和极限平衡法(LEM)斜坡稳定性对比分析研究;进行SBP输入参数对剪切带扩展系数R的敏感度分析. 研究结果显示,对于斜坡剪切带破坏长度,当剪切带扩展系数R不大于1时,LEM与SBP得到的滑坡滑裂面区域一致,当R大于1时,SBP计算得到的最终滑动区域比LEM计算得到的区域大;在斜坡发生滑动破坏区域SBP比LEM计算得到的安全系数低;地震影响因素和土体特征位移对R的影响较大.

关键词: 海底滑坡稳定性分析剪切带扩展法(SBP)敏感度分析    
Abstract:

The principle of shear band propagation method (SBP) and its application in the stability analysis of submarine landslides were briefly introduced. Then, Limit equilibrium method(LEM)and the SBP based on the Gauss formula were used to analyze the stability of a typical submarine slope in Liuheng island, Zhoushan, China. Finally, parametric studies were carried out to investigate the effects of input parameters of the SBP on the shear band propagation coefficient R. Results show that when R no more than 1, the failure length of the slope shear zone obtained by the LEM is the same as that of the SBP. However, when R more than 1, the failure length of the slope shear zone calculated by the SBP is larger than that calculated by the LEM. Besides, it can be seen that the factor of safety calculated by the SBP is lower than that of the LEM in the failure zone of the slope. It is found that both the seismic factors and characteristic displacement have a great influence on R values.

Key words: submarine landslide    stability analysis    shear band propagation method (SBP)    sensitivity analysis
收稿日期: 2020-07-24 出版日期: 2021-07-05
CLC:  P 751  
基金资助: 国家自然科学基金资助项目(51939010);中央高校基本科研业务费专项资金资助项目(2021QNA4037)
作者简介: 沈佳轶(1983—),男,副教授,从事岩土工程研究. orcid.org/0000-0001-6967-1468. E-mail: jiayi@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
沈佳轶
库猛
王立忠

引用本文:

沈佳轶,库猛,王立忠. 基于剪切带扩展法的海底斜坡稳定性分析[J]. 浙江大学学报(工学版), 2021, 55(7): 1299-1307.

Jia-yi SHEN,Meng KU,Li-zhong WANG. Stability analyses of submarine slopes based on shear band propagation method. Journal of ZheJiang University (Engineering Science), 2021, 55(7): 1299-1307.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2021.07.009        https://www.zjujournals.com/eng/CN/Y2021/V55/I7/1299

图 1  应力应变关系与不稳定带示意图
图 2  海底斜坡剪切带与切应力比分布[22]
图 3  六横岛海底斜坡地形图
参数类型 参数 符号/单位 取值
地震参数 地震影响系数 kh 0.08
地震折减系数 δd 0.6
土体物理力学参数 不排水抗剪强度系数 k 0.25
峰值抗剪强度/残余抗剪强度 s 5.0
土体的特征位移 $\bar \delta $/m 0.5
归一化超孔隙水压力 ru 0.0
土体的有效重度 γ′/(kN·m?3 8.0
加荷弹性模量 E1 300τp
卸荷弹性模量 Eu 600τp
表 1  SBP输入参数取值
图 4  海底斜坡高斯函数曲线拟合图
图 5  切应力比分布图
图 6  海底斜坡安全系数分布图
图 7  基于SBP的海底斜坡稳定性分析程序界面
参数 符号/单位 取值范围
不排水抗剪强度系数 k 0.23~0.27
峰值抗剪强度/残余抗剪强度 s 4~8
地震影响系数 kh 0.06~0.10
地震折减系数 δd 0.45~0.65
土体特征位移 $\bar \delta $/m 0.2~1.0
土体的有效重度 γ′/(kN·m?3 8~12
表 2  SBP输入参数的取值范围
图 8  SBP输入参数对剪切带扩展系数的影响
参数 符号/单位 $\overline S \ $
地震影响系数 kh 1.14
地震折减系数 δd 1.07
土体特征位移 $\bar \delta $/m 0.85
不排水抗剪强度系数 k 0.48
土体有效重度 γ′/(kN·m?3 0.23
峰值抗剪强度/残余抗剪强度 s 0.09
表 3  SBP输入参数的平均敏感度系数
1 LEE H J, LOCAT J, DESGAGNÉS P, et al. Submarine mass movements on continental margins [M]. Oxford: Blackwell Publishing Limited. 2007.
2 HAMPTON M A, LEE H J, LOCAT J Submarine landslides[J]. Reviews of Geophysics, 1996, 34 (1): 33- 59
doi: 10.1029/95RG03287
3 BRYN P, BERG K, LIEN R, et al Submarine slides on the Mid-Norwegian continental margin: a challenge to the oil industry[J]. Norwegian Petroleum Society Special Publications, 2005, 12: 255- 263
4 VANNESTE M, SULTAN N, GARZIGLIA S, et al Seafloor instabilities and sediment deformation processes: the need for integrated, multidisciplinary investigations[J]. Marine Geology, 2014, 352: 183- 214
doi: 10.1016/j.margeo.2014.01.005
5 MCADOO B G, PRATSON L F, ORANGE D L Submarine landslide geomorphology, US continental slope[J]. Marine Geology, 2000, 169 (1-2): 103- 136
doi: 10.1016/S0025-3227(00)00050-5
6 BEA R G How sea floor slides affect offshore structures[J]. Oil and Gas Journal, 1971, 69: 88- 92
7 HEINRICH P, PIATANESI A, OKAL E, et al Near-field modeling of the July 17, 1998 tsunami in Papua New Guinea[J]. Geophysical Research Letters, 2000, 27 (19): 3037- 3040
doi: 10.1029/2000GL011497
8 HSU S K, KUO J, LO C L, et al Turbidity currents, submarine landslides and the 2006 Pingtung earthquake off SW Taiwan[J]. Terrestrial, Atmospheric and Oceanic Sciences, 2008, 19 (6): 767- 772
doi: 10.3319/TAO.2008.19.6.767(PT)
9 SHEN J, KARAKUS M, XU C Chart-based slope stability assessment using the generalized Hoek-Brown criterion[J]. International Journal of Rock Mechanics and Mining sciences, 2013, 64: 210- 219
doi: 10.1016/j.ijrmms.2013.09.002
10 LAW K T, LUMB P A limit equilibrium analysis of progressive failure in the stability of slopes[J]. Canadian Geotechnical Journal, 1978, 15 (1): 113- 122
doi: 10.1139/t78-009
11 郑颖人, 赵尚毅 有限元强度折减法在土坡与岩坡中的应用[J]. 岩石力学与工程学报, 2004, 23 (19): 3381- 3388
ZHENG Ying-ren, ZHAO Shang-yi Application of strength reduction FEM in soil and rock slope[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23 (19): 3381- 3388
doi: 10.3321/j.issn:1000-6915.2004.19.029
12 SHEN J, KARAKUS M Three-dimensional numerical analysis for rock slope stability using shear strength reduction method[J]. Canadian Geotechnical Journal, 2014, 51: 164- 172
doi: 10.1139/cgj-2013-0191
13 NISBET E G, PIPER D J W Giant submarine landslides[J]. Nature, 1998, 392: 329- 330
doi: 10.1038/32765
14 LEGROS F The mobility of long-runout landslides[J]. Engineering Geology, 2002, 63 (3-4): 301- 331
doi: 10.1016/S0013-7952(01)00090-4
15 CLARE M A, TALLING P J, CHALLENOR P, et al Distal turbidites reveal a common distribution for large (>0.1 km3) submarine landslide recurrence [J]. Geology, 2014, 42 (3): 263- 266
doi: 10.1130/G35160.1
16 PALMER A C, RICE J R The growth of slip surfaces in the progressive failure of over-consolidated clay[J]. Proceedings of the Royal Society A: Mathematical and Physical Sciences, 1973, 332: 527- 548
17 PUZRIN A M, GERMANOVICH L N The growth of shear bands in the catastrophic failure of soils[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2005, 461: 1199- 1228
doi: 10.1098/rspa.2004.1378
18 KVALSTAD T J, ANDRESEN L, FORSBERG C F, et al The storegga slide: evaluation of triggering sources and slide mechanics[J]. Marine and Petroleum Geology, 2005, 22 (1-2): 245- 256
doi: 10.1016/j.marpetgeo.2004.10.019
19 LOCAT A, LEROUEIL S, BERNANDER S, et al Progressive failures in eastern Canadian and Scandinavian sensitive clays[J]. Canadian Geotechnical Journal, 2011, 48 (11): 1696- 1712
doi: 10.1139/t11-059
20 ZHANG W, WANG D, RANDOLPH M F, et al Dynamic propagation criteria for catastrophic failure in planar landslides[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2016, 40 (17): 2312- 2338
doi: 10.1002/nag.2531
21 BERNANDER S, KULLINGSJÖ A, GYLLAND A, et al Downhill progressive landslides in long natural slopes: triggering agents and landslide phases modeled with a finite difference method[J]. Canadian Geotechnical Journal, 2016, 53 (10): 1565- 1582
doi: 10.1139/cgj-2015-0651
22 PUZRIN A M, GRAY T E, HILL A J Significance of the actual nonlinear slope geometry for catastrophic failure in submarine landslides[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2015, 471: 1- 25
23 ADAMS E W, SCHLAGER W Basic types of submarine slope curvature[J]. Journal of Sedimentary Research, 2000, 70 (4): 814- 828
doi: 10.1306/2DC4093A-0E47-11D7-8643000102C1865D
24 PUZRIN A M, GERMANOVICH L N, FRIEDLI B Shear band propagation analysis of submarine slope stability[J]. Géotechnique, 2016, 66 (3): 188- 201
25 PUZRIN A M, GRAY T E, HILL A J Retrogressive shear band propagation and spreading failure criteria for submarine landslides[J]. Géotechnique, 2017, 67 (2): 1- 11
26 HANCE J J. Submarine slope stability[D]. Austin: University of Texas at Austin. 2003.
27 中华人民共和国住房和城乡建设部. GB 50011-2010 建筑抗震设计规范[S]. 北京: 中国建筑工业出版社, 2010.
28 中华人民共和国水利部. GB 51247—2018 水工建筑物抗震设计规范[S]. 北京: 中国计划出版社, 2018.
29 SAURER E, PUZRIN A M Validation of the energy-balance approach to curve-shaped shear-band propagation in soil[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2011, 467: 627- 652
doi: 10.1098/rspa.2010.0285
30 孙鸿程, 蔡廷禄, 夏小明, 等 舟山六横岛海域浅部地层结构与水下滑坡分布特征[J]. 海洋学研究, 2019, 37 (1): 59- 66
SUN Hong-cheng, CAI Yan-lu, XIA Xiao-ming, et al Distribution characteristics of subaqueous landslides in the sea area of Liuheng Island, Zhoushan[J]. Journal of Marine sciences, 2019, 37 (1): 59- 66
doi: 10.3969/j.issn.1001-909X.2019.01.008
31 龙凡, 王立忠, 李凯, 等 舟山黏土和温州黏土灵敏度差别成因[J]. 浙江大学学报: 工学版, 2015, 49 (2): 218- 224
LONG Fan, WANG Li-zhong, LI Kai, et al Cause of sensitivity difference of Zhoushan clay and Wenzhou clay[J]. Journal of Zhejiang University: Engineering Science, 2015, 49 (2): 218- 224
32 倪恒, 刘佑荣, 龙治国 正交设计在滑坡敏感性分析中的应用[J]. 岩石力学与工程学报, 2002, 21 (7): 989- 992
NI Heng, LIU You-rong, LONG Zhi-guo Application of orthogonal design to sensitivity analysis of landslide[J]. Chinese Journal of Rock Mechanics and Engineering, 2002, 21 (7): 989- 992
doi: 10.3321/j.issn:1000-6915.2002.07.010
[1] 吕良,陈虹,宫洵,赵海光,胡云峰. 汽油发动机冷却系统建模与水温控制[J]. 浙江大学学报(工学版), 2019, 53(6): 1119-1129.
[2] 袁海辉,葛一敏,甘春标. 不确定性扰动下双足机器人动态步行的自适应鲁棒控制[J]. 浙江大学学报(工学版), 2019, 53(11): 2049-2057.
[3] 尹娇妹, 赵昕玥, 张树有. 考虑Sobol缺陷敏感度的抗恶劣环境结构设计方法[J]. 浙江大学学报(工学版), 2015, 49(8): 1487-1494.
[4] 谭骏华, 罗坤, 樊建人. 软球模型在颗粒流全尺度模拟中的验证和分析[J]. 浙江大学学报(工学版), 2015, 49(2): 344-350.
[5] 王婷, 陈斌, 姚文熙, 吕征宇. 异步电机无速度传感器控制的Holtz型磁链观测器性能分析[J]. 浙江大学学报(工学版), 2014, 48(9): 1690-1695.
[6] 杨波, 钟彦儒, 曾光. 阶梯波链式静止同步补偿器电容电压平衡控制[J]. J4, 2014, 48(4): 600-609.
[7] 赵权利, 孙红月, 尚岳全, 王智磊. 承压水孔压的时空变化对边坡稳定性影响[J]. J4, 2013, 47(8): 1366-1372.
[8] 刘兆燕,江全元,徐立中,等. 基于特征根聚类的电力系统时滞稳定域研究[J]. J4, 2009, 43(8): 1473-1479.
[9] 温正城, 王智化, 杨卫娟, 等. 臭氧在烟气中氧化零价汞的机理研究[J]. J4, 2009, 43(09): 1625-1631.
[10] 马皓 雷彪. 逆变器无连线并联系统的统一小信号模型及应用[J]. J4, 2007, 41(7): 1111-1115.
[11] 王智化 周俊虎 温正城 张彦威 岑可法. 利用臭氧同时脱硫脱硝过程中NO的氧化机理研究[J]. J4, 2007, 41(5): 765-769.