Please wait a minute...
浙江大学学报(工学版)  2021, Vol. 55 Issue (7): 1317-1326    DOI: 10.3785/j.issn.1008-973X.2021.07.011
土木工程、水利工程     
支护压力控制下隧道周围砂土变形破坏物质点法模拟
张春新(),朱鸿鹄*(),李豪杰,张巍,刘春
南京大学 地球科学与工程学院,江苏 南京 210023
Material point method simulations of sand deformation and failure around tunnel controlled by support pressure
Chun-xin ZHANG(),Hong-hu ZHU*(),Hao-jie LI,Wei ZHANG,Chun LIU
School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China
 全文: PDF(2009 KB)   HTML
摘要:

为了探究隧道周围砂土地层在支护压力减小过程中的变形破坏机理,利用能够进行岩土大变形分析的物质点法(MPM)对该过程进行数值模拟. 研究隧道周围土体的剪切带特征、土拱效应、MPM地面沉降槽形态以及支护压力与地层位移间的关系;验证该数值方法研究隧道诱发变形的可靠性. 对比预测结果与已有试验和理论表明,MPM能够准确预测出隧道支护压力降低引起的地层变形和极限支护压力,并且可以得到地层整体失稳及坍塌后的变形行为. 在此基础上,分析隧道埋深比和砂土内摩擦角对变形过程中土拱效应强弱、极限支护压力和地层变形的影响.

关键词: 隧道施工物质点法(MPM)土拱效应极限支护压力沉降槽    
Abstract:

To explore the deformation and failure mechanism of sand foundation induced by the decrease of tunnel support pressure, the material point method (MPM), a large deformation analyzing method in geotechnical engineering was used to simulate the whole process. The characteristics of localized shear bands, the arching effect, the settlement trough shape, and the relationship between support pressure and ground movement were investigated. The reliability of MPM in analyzing tunnel-induced soil deformation was verified. By comparing the simulated results with experimental and theoretical data, it is shown that MPM can accurately predict the ground deformation caused by the reduction of tunnel support pressure and the ultimate support pressure, and obtain the overall deformation behavior before and after tunnel collapse. On this basis, the influence of cover depth-to-diameter ratios and friction angles on the arching effect, the limiting support pressure and the strata deformation were investigated.

Key words: tunnel construction    material point method (MPM)    soil arching effect    ultimate support pressure    settlement trough
收稿日期: 2020-07-25 出版日期: 2021-07-05
CLC:  TU 43  
基金资助: 国家自然科学基金资助项目(42077235,41722209,41672277)
通讯作者: 朱鸿鹄     E-mail: cxzhang@smail.nju.edu.cn;zhh@nju.edu.cn
作者简介: 张春新(1997—),男,硕士生,从事岩土大变形数值模拟研究. orcid.org/0000-0003-4285-5050.E-mail: cxzhang@smail.nju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
张春新
朱鸿鹄
李豪杰
张巍
刘春

引用本文:

张春新,朱鸿鹄,李豪杰,张巍,刘春. 支护压力控制下隧道周围砂土变形破坏物质点法模拟[J]. 浙江大学学报(工学版), 2021, 55(7): 1317-1326.

Chun-xin ZHANG,Hong-hu ZHU,Hao-jie LI,Wei ZHANG,Chun LIU. Material point method simulations of sand deformation and failure around tunnel controlled by support pressure. Journal of ZheJiang University (Engineering Science), 2021, 55(7): 1317-1326.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2021.07.011        https://www.zjujournals.com/eng/CN/Y2021/V55/I7/1317

图 1  模型尺寸及物质点离散
图 2  支护压力−地面沉降曲线
图 3  不同支护压力下的土体位移云图(C/D=1.5,φ=25°)
图 4  不同支护压力下的土体偏应变云图(C/D=1.5,φ=25°)
图 5  σT=51 kPa时土体体应变云图(C/D=1.5,φ=25°)
图 6  剪切带内两物质点的应力变化
图 7  上覆土层的应力分布
图 8  地面沉降拟合曲线(C/D=1.5,φ=25°)
图 9  不同埋深条件下压力折减系数与地面沉降关系曲线
C/D σTL/kPa λ
1.5 51 0.73
2.5 63 0.78
3.5 64 0.84
表 1  不同埋深条件下的极限支护压力
图 10  不同压力折减系数下土体偏应变云图
图 11  不同砂土内摩擦角下压力折减系数与地面沉降关系
φ/(°) σTL/kPa λ
15 129 0.55
25 66 0.77
35 43 0.85
表 2  不同内摩擦角的极限支护压力
图 12  土体中竖向应力沿深度的分布
图 13  λ=0.95时不同内摩擦角条件下的土体偏应变云图
1 施成华, 彭立敏, 刘宝琛 浅埋隧道开挖对地表建筑物的影响[J]. 岩石力学与工程学报, 2004, 23 (19): 3310- 3316
SHI Cheng-hua, PENG Li-min, LIU Bao-chen Influence of shallow tunnel excavation on ground surface buildings[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23 (19): 3310- 3316
doi: 10.3321/j.issn:1000-6915.2004.19.017
2 丁智, 张霄, 周联英, 等 近距离桥桩与地铁隧道相互影响研究及展望[J]. 浙江大学学报: 工学版, 2018, 52 (10): 1943- 1953
DING Zhi, ZHANG Xiao, ZHOU Lian-ying, et al Research and prospect of interaction between close bridge pile and metro tunnel[J]. Journal of Zhejiang University: Engineering Science, 2018, 52 (10): 1943- 1953
doi: 10.3785/j.issn.1008-973X.2018.10.014
3 VORSTER T E, KLAR A, SOGA K, et al Estimating the effects of tunneling on existing pipelines[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2005, 131 (11): 1399- 1410
doi: 10.1061/(ASCE)1090-0241(2005)131:11(1399)
4 ALIABADIAN Z, SHARAFISAFA M, NAZEMI M, et al Numerical analyses of tunnel collapse and slope stability assessment under different filling material loadings: a case study[J]. Arabian Journal of Geosciences, 2015, 8 (3): 1229- 1242
doi: 10.1007/s12517-014-1286-1
5 HENCHER S R The Glendoe tunnel collapse in Scotland[J]. Rock Mechanics and Rock Engineering, 2019, 52: 4033- 4055
doi: 10.1007/s00603-019-01812-w
6 MAIR R J, TAYLOR R N. Theme lecture: bored tunnelling in the urban environment[C]// 14th International Conference on Soil Mechanics and Foundation Engineering. Hamburg: ISSMGE, 1997, 4: 2353-2385.
7 陈仁朋, 李君, 陈云敏, 等 干砂盾构开挖面稳定性模型试验研究[J]. 岩土工程学报, 2011, 33 (1): 117- 122
CHEN Ren-peng, LI Jun, CHEN Yun-min, et al Large-scale tests on face stability of shield tunnelling in dry cohesionless soil[J]. Chinese Journal of Geotechnical Engineering, 2011, 33 (1): 117- 122
8 米博, 项彦勇 砂土地层浅埋盾构隧道开挖渗流稳定性的模型试验和计算研究[J]. 岩土力学, 2020, 41 (3): 837- 848
MI Bo, XIANG Yan-yong Model experiment and calculation analysis of excavation-seepage stability for shallow shield tunneling in sandy ground[J]. Rock and Soil Mechanics, 2020, 41 (3): 837- 848
9 朱伟, 秦建设, 卢廷浩 砂土中盾构开挖面变形与破坏数值模拟研究[J]. 岩土工程学报, 2005, 27 (8): 897- 902
ZHU Wei, QIN Jian-she, LU Ting-hao Numerical study on face movement and collapse around shield tunnels in sand[J]. Chinese Journal of Geotechnical Engineering, 2005, 27 (8): 897- 902
doi: 10.3321/j.issn:1000-4548.2005.08.009
10 秦建设, 虞兴福, 钟小春, 等 黏土中盾构开挖面变形与破坏数值模拟研究[J]. 岩土力学, 2007, 28 (Suppl. 1): 511- 515
QIN Jian-she, YU Xing-fu, ZHONG Xiao-chun, et al Numerical research on face movement and collapse of shield tunneling in silt grounds[J]. Rock and Soil Mechanics, 2007, 28 (Suppl. 1): 511- 515
11 MARSHALL A M, FARRELL R, KLAR A, et al Tunnels in sands: the effect of size, depth and volume loss on greenfield displacements[J]. Geotechnique, 2012, 62 (5): 385- 399
doi: 10.1680/geot.10.P.047
12 MARSHALL A M, ELKAYAM I, KLAR A. Ground behaviour above tunnels in sand-DEM simulations versus centrifuge test results[C]// 2009 2nd International Conference on Computational Methods in Tunnelling. Bochum: [s. n.], 2009: 183-190.
13 SONG G, FRANZA A, ELKAYAM I, et al. A study of greenfield tunnelling in sands using FEM, DEM, and centrifuge modelling[C]// Micro to Macro Mathematical Modelling in Soil Mechanics. Reggio Calabria: [s. n.], 2018: 337-345.
14 周小文, 濮家骝 砂土中隧洞开挖引起的地面沉降试验研究[J]. 岩土力学, 2002, 23 (5): 559- 563
ZHOU Xiao-wen, PU Jia-liu Centrifuge model test on ground settlement induced by tunneling in sandy soil[J]. Rock and Soil Mechanics, 2002, 23 (5): 559- 563
doi: 10.3969/j.issn.1000-7598.2002.05.007
15 WONGSAROJ J, SOGA K, MAIR R J Tunnelling-induced consolidation settlements in London Clay[J]. Géotechnique, 2013, 63 (13): 1103- 1115
doi: 10.1680/geot.12.P.126
16 BYM T, MARKETOS G, BURLAND J B, et al Use of a two-dimensional discrete-element line-sink model to gain insight into tunnelling-induced deformations[J]. Géotechnique, 2013, 63 (9): 791- 795
doi: 10.1680/geot.12.T.003
17 SULSKY D, CHEN Z, SCHREYER H L A particle method for history-dependent materials[J]. Computer Methods in Applied Mechanics and Engineering, 1994, 118 (1-2): 179- 196
doi: 10.1016/0045-7825(94)90112-0
18 SULSKY D, ZHOU S J, SCHREYER H L Application of a particle-in-cell method to solid mechanics[J]. Computer Physics Communications, 1995, 87 (1-2): 236- 252
doi: 10.1016/0010-4655(94)00170-7
19 FERN J, ROHE A, SOGA K, et al. The material point method for geotechnical engineering: a practical guide[M]. Boca Raton: CRC Press, 2019.
20 史卜涛, 张云, 张巍 边坡稳定性分析的物质点强度折减法[J]. 岩土工程学报, 2015, 38 (9): 1678- 1648
SHI Bo-tao, ZHANG Yun, ZHANG Wei Strength reduction material point method for slope stability[J]. Chinese Journal of Geotechnical Engineering, 2015, 38 (9): 1678- 1648
doi: 10.11779/CJGE201509016
21 王斌, 冯夏庭, 潘鹏志, 等 物质点法在边坡稳定性评价中的应用研究[J]. 岩石力学与工程学报, 2017, 36 (9): 2146- 2155
WANG Bin, FENG Xia-ting, PAN Peng-zhi, et al Slope failure analysis using the material point method[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36 (9): 2146- 2155
22 王双, 李小春, 石露, 等 物质点强度折减法及其在边坡中的应用[J]. 岩土力学, 2016, 37 (9): 2672- 2678
WANG Shuang, LI Xiao-chun, SHI Lu, et al Material point strength reduction method and its application to slope engineering[J]. Rock and Soil Mechanics, 2016, 37 (9): 2672- 2678
23 张芮瑜, 孙玉进, 宋二祥 强夯的物质点法模拟及其能量转化规律分析[J]. 岩土工程学报, 2019, 41 (7): 1206- 1216
ZHANG Rui-yu, SUN Yu-jin, SONG Er-xiang Simulation of dynamic compaction using material point method and analysis of its energy conversion law[J]. Chinese Journal of Geotechnical Engineering, 2019, 41 (7): 1206- 1216
24 PHUONG N T V, VAN TOL A F, ELKADI A S K, et al Numerical investigation of pile installation effects in sand using material point method[J]. Computers and Geotechnics, 2016, 73: 58- 71
doi: 10.1016/j.compgeo.2015.11.012
25 FERN J Modelling tunnel-induced deformations with the material point method[J]. Computers and Geotechnics, 2019, 111: 202- 208
doi: 10.1016/j.compgeo.2019.03.017
26 FERN J, DE LANGE D, ZWANENBURG C, et al Experimental and numerical investigations of dyke failures involving soft materials[J]. Engineering Geology, 2017, 219: 130- 139
doi: 10.1016/j.enggeo.2016.07.006
27 BEUTH L, WIECKOWSKI Z, VERMEER P A Solution of quasi-static large-strain problems by the material point method[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2011, 35 (13): 1451- 1465
28 汪大海, 贺少辉, 刘夏冰, 等 基于主应力旋转特征的浅埋隧道上覆土压力计算及不完全拱效应分析[J]. 岩石力学与工程学报, 2019, 38 (6): 1284- 1296
WANG Da-hai, HE Shao-hui, LIU Xia-bing, et al A modified method for determining the overburden pressure above shallow tunnels considering the distribution of the principal stress rotation and the partially mobilized arching effect[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38 (6): 1284- 1296
29 PECK R B. Deep Excavations and tunneling in soft ground[C]// 7th International Conference on Soil Mechanics and Foundation Engineering. Mexico: ISSMGE, 1969: 225–290.
[1] 杨松松,王梅,杜建安,郭勇,耿炎. 管幕预筑法顶管施工顺序对地表沉降的影响[J]. 浙江大学学报(工学版), 2020, 54(9): 1706-1714.
[2] 吴昌胜, 朱志铎. 不同隧道施工方法引起地层损失率的统计分析[J]. 浙江大学学报(工学版), 2019, 53(1): 19-30.
[3] 孔令刚, 姚宏波, 詹良通, 陈云敏. 含水率对非饱和土质覆盖层塌陷模式的影响[J]. 浙江大学学报(工学版), 2017, 51(5): 847-855.
[4] 张润峰, 梁荣柱,张献民,薛新华. 下穿既有建筑期间盾构施工参数分析[J]. 浙江大学学报(工学版), 2016, 50(3): 545-550.
[5] 邱子义,韩同春,豆红强,李智宁. 桩后及桩侧土拱共同作用的抗滑桩桩间距分析[J]. 浙江大学学报(工学版), 2016, 50(3): 551-558.
[6] 朱剑锋 徐日庆. 考虑时效和土拱效应桩锚基坑土压力计算方法[J]. , 2009, 43(4): 766-770.