Please wait a minute...
浙江大学学报(工学版)  2021, Vol. 55 Issue (7): 1327-1338    DOI: 10.3785/j.issn.1008-973X.2021.07.012
土木工程、水利工程     
可液化土层对地下结构地震影响的振动台试验
刘春晓1,2(),陶连金1,*(),边金3,张宇1,冯锦华4,代希彤5,王兆卿6
1. 北京工业大学 城市与工程安全减灾教育部重点实验室,北京 100124
2. 中铁第五勘察设计院集团有限公司,北京 102600
3. 广东海洋大学 海洋工程学院,广东 湛江 524088
4. 国核电力规划设计研究院有限公司,北京 1000954
5. 青岛国信建设投资有限公司,山东 青岛 266100
6. 北京城建兴顺房地产开发有限公司,北京 101300
Shaking table test of seismic effect of liquefiable soil layer on underground structure
Chun-xiao LIU1,2(),Lian-jin TAO1,*(),Jin BIAN3,Yu ZHANG1,Jin-hua FENG4,Xi-tong DAI5,Zhao-qing WANG6
1. Key Laboratory of Urban Security and Disaster Engineering of Ministry of Education, Beijing University of Technology, Beijing 100124, China
2. China Railway Fifth Survey And Design Institute Group CO., LTD., Beijing 102600, China
3. College of Ocean Engineering, Guangdong Ocean University, Zhanjiang 524088, China
4. State Nuclear Electric Power Planning Design & Research Institute CO., LTD., Beijing 100095, China
5. Qingdao Conson Construction & Investment Co., Ltd., Qingdao 266100, China
6. Beijing Urban Construction Investment and Development Co., Ltd., Beijing 101300, China
 全文: PDF(4391 KB)   HTML
摘要:

针对目前地铁区间隧道建设中常见的单层双跨断面形式结构,开展结构整体位于可液化土层、结构底部存在可液化土层、结构位于非液化土层3组振动台试验,分析地基土加速度、孔隙水压力和结构位移之间的关系. 结果表明,地基土加速度放大系数沿埋深受地震动、地震动峰值、场地的影响展现出不同的变化规律;紧邻结构两侧位置处土体不易液化;结构底部0~45度范围内土体容易液化;液化程度最严重区域分布在结构水平两侧一定距离处和结构底部两侧位置;超孔压比数值分布大小同地震波自身Arias强度有很好的对应关系.

关键词: 液化矩形隧道振动台试验加速度孔隙水压力    
Abstract:

Aiming at the common single-layer double-span cross-section structure in subway tunnel construction at present, three groups of shaking table tests were carried out, in which the liquefiable soil layer was all around the structure, at the bottom of the structure, and the structure was located in non-liquefied soil layer. Relationship among foundation soil acceleration, pore water pressure and structural displacement was analyzed. Results show that the acceleration amplification coefficient of foundation soil changes along the buried depth, which is affected by ground motions, peak values of ground motion and sites showing different variation rules. The soil adjacent to both sides of the structure is not easy to liquefaction. The soil is easy to liquefaction in the range of 45 degrees at the bottom of the structure. The most serious liquefaction area is distributed at a certain distance between the horizontal sides of the structure and on both sides of the bottom of the structure. The numerical distribution of excess pore pressure ratio corresponds well to the Arias intensity of seismic waves.

Key words: liquefaction    rectangular tunnel    shaking table test    acceleration    pore water pressure
收稿日期: 2020-05-04 出版日期: 2021-07-05
CLC:  O 319.56  
基金资助: 国家重点研发计划资助项目(2017YFC0805403);国家自然科学基金资助项目(41877218)
通讯作者: 陶连金     E-mail: liuchunxiao17@163.com;ljtao@bjut.edu.cn
作者简介: 刘春晓(1992—),女,博士,工程师,从事岩土与地下工程和地质路基勘察设计方面的工作. orcid.org/0000-0003-4349-5878.E-mail: liuchunxiao17@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
刘春晓
陶连金
边金
张宇
冯锦华
代希彤
王兆卿

引用本文:

刘春晓,陶连金,边金,张宇,冯锦华,代希彤,王兆卿. 可液化土层对地下结构地震影响的振动台试验[J]. 浙江大学学报(工学版), 2021, 55(7): 1327-1338.

Chun-xiao LIU,Lian-jin TAO,Jin BIAN,Yu ZHANG,Jin-hua FENG,Xi-tong DAI,Zhao-qing WANG. Shaking table test of seismic effect of liquefiable soil layer on underground structure. Journal of ZheJiang University (Engineering Science), 2021, 55(7): 1327-1338.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2021.07.012        https://www.zjujournals.com/eng/CN/Y2021/V55/I7/1327

图 1  不同工况土层分布及结构位置
图 2  振动台试验的地震动加速度时程及傅立叶谱
图 3  地震波Arias强度
输入波类型 编号 ap Td/s
北京场地波 BJ-1 0.1 20
北京场地波 BJ-2 0.2 20
北京场地波 BJ-3 0.3 20
名山波 MS-1 0.1 150
名山波 MS-3 0.3 150
名山波 MS-5 0.5 150
Kobe波 KO-1 0.1 27
Kobe波 KO-2 0.3 27
Kobe波 KO-3 0.5 27
表 1  振动台试验加载条件
图 4  不同工况的传感器布置
图 5  不同工况加速度放大系数沿地基高度的变化
图 6  MS-5结构位移及超孔压比时程曲线
图 7  结构右侧土体超孔压比最大值水平向变化
图 8  结构右侧土体超孔压比最大值竖向变化
图 9  紧邻结构底部超孔压比最大值水平向变化
图 10  结构底部0.265 m深度位置超孔压比最大值水平向变化
图 11  结构正下方土体超孔压比最大值随深度的变化
图 12  结构底部紧邻结构位置土体超孔压比最大值水平向变化
图 13  结构底部0.265 m埋深位置土体超孔压比最大值水平向变化
图 14  结构底部0.425 m埋深位置土体超孔压比最大值水平向变化
图 15  模型中线右半区域场地超孔压比峰值场
图 16  结构底部右半区域场地超孔压比峰值场
图 17  不同地震动作用下监测点超孔压比时程、地震加速度时程和Arias强度的关系
1 陈育民, 刘汉龙, 周云东 液化及液化后砂土的流动特性分析[J]. 岩土工程学报, 2006, 28 (9): 1139- 1143
CHEN Yu-min, LIU Han-long, ZHOU Yun-dong Analysis on flow characteristics of liquefied and post-liquefied sand[J]. Chinese Journal of Geotechnical Engineering, 2006, 28 (9): 1139- 1143
doi: 10.3321/j.issn:1000-4548.2006.09.017
2 HOLZER T L, YOUD T L Liquefaction, ground oscillation, and soil deformation at the wildlife array, california[J]. Bulletin of the Seismological Society of America, 2007, 97 (3): 961- 976
doi: 10.1785/0120060156
3 CHOU H S, YANG C Y, HSIEH B J, et al A study of liquefaction related damages on shield tunnels[J]. Tunnelling and Underground Space Technology, 2001, 16 (3): 185- 193
doi: 10.1016/S0886-7798(01)00057-8
4 BERRILL J B. A study of high-frequency strong ground motion from the San Fernando earthquake[D]. Pasadena: California Institute of Technology, 1975.
5 KOSEKI J, MATSUO O, NINOMIYA Y, et al Uplift of sewer manholes during the 1993 Kushiro-Oki earthquake[J]. Soils and Foundations, 1997, 37 (1): 109- 121
doi: 10.3208/sandf.37.109
6 HAMADA M, ISOYAMA R, WAKAMATSU K Liquefaction-induced ground displacement and its related damage to lifeline facilities[J]. Soils and Foundations, 1996, 36 (Suppl.): 81- 97
7 李吉. 基于构件破坏概率的地铁车站震害预测方法研究[D]. 哈尔滨: 中国地震局工程力学研究所, 2016.
LI Ji. Seismic damage prediction method of subway station based on component failure probability[D]. Harbin: Institute of Engineering Mechanics, China Earthquake Administration, 2016.
8 陈国兴, 左熹, 王志华, 等 地铁车站结构近远场地震反应特性振动台试验[J]. 浙江大学学报: 工学版, 2010, 44 (10): 1955- 1961
CHEN Guo-xing, ZUO Xi, WANG Zhi-hua, et al Shaking table model test of subway station structure under far field and near field ground motion[J]. Journal of Zhejiang University: Engineering Science, 2010, 44 (10): 1955- 1961
doi: 10.3785/j.issn.1008-973X.2010.10.019
9 左熹, 陈国兴, 王志华, 等 近远场地震动作用下地铁车站结构地基液化效应的振动台试验[J]. 岩土力学, 2010, 31 (12): 3733- 3740
ZUO Xi, CHEN Guo-xing, WANG Zhi-hua, et al Shaking table test on ground liquefaction effect of soil-metro station structure under near-and-far field ground motions[J]. Rock and Soil Mechanics, 2010, 31 (12): 3733- 3740
doi: 10.3969/j.issn.1000-7598.2010.12.007
10 陈苏, 陈国兴, 戚承志, 等 可液化场地上三拱立柱式地铁地下 车站结构地震反应特性振动台试验研究[J]. 岩土力学, 2015, 36 (7): 1899- 1914
CHEN Su, CHEN Guo-xing, QI Cheng-zhi, et al A shaking table-based experimental study of seismic response of three-arch type's underground subway station in liquefiable ground[J]. Rock and Soil Mechanics, 2015, 36 (7): 1899- 1914
11 安军海, 陶连金, 王焕杰, 等 可液化场地下盾构扩挖地铁车站结构地震破坏机制振动台试验[J]. 岩石力学与工程学报, 2017, 36 (8): 2018- 2030
AN Jun-hai, TAO Lian-jin, WANG Huan-jie, et al A shaking table-based experimental study of seismic response of a shield-enlarge-dig type subway station structure in liquefiable ground[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36 (8): 2018- 2030
12 TAMARI Y, TOWHATA I Seismic soil-structure interaction of cross sections of flexible underground structures subjected to soil liquefaction[J]. Soils and Foundations, 2003, 43 (2): 69- 87
doi: 10.1016/S0038-0806(20)30803-9
13 CHEN G X, CHEN S, ZUO X Shaking-table tests and numerical simulations on a subway structure in soft soil[J]. Soil Dynamics and Earthquake Engineering, 2015, 76: 13- 28
doi: 10.1016/j.soildyn.2014.12.012
14 CHEN G, WANG Z, ZUO X, et al Shaking table test on the seismic failure characteristics of a subway station structure on liquefiable ground[J]. Earthquake Engineering and Structural Dynamics, 2013, 42 (10): 1489- 1507
doi: 10.1002/eqe.2283
15 邹炎. 地铁隧道地震反应规律和震害机理研究[D]. 哈尔滨: 中国地震局工程力学研究所, 2012.
ZOU Yan. Study on seismic response law and damage mechanism of subway tunnels[D]. Harbin: Institute of Engineering Mechanics, China Earthquake Administration, 2012.
16 许成顺, 窦鹏飞, 杜修力, 等 液化场地−结构动力相互作用振动台试验发展与回顾[J]. 北京工业大学学报, 2019, 45 (5): 502- 514
XU Cheng-shun, DOU Peng-fei, DU Xiu-li, et al Review on shaking table test of dynamic interaction of liquefiable site-structures system: retrospect and prospect[J]. Journal of Beijing University of Technology, 2019, 45 (5): 502- 514
17 戴志广. 基于振动台试验开展砂土液化的机理与判别研究[D]. 舟山: 浙江海洋大学, 2017.
DAI Zhi-guang. Study on mechanism and discrimination of sand liquefaction based on shaking table test[D]. Zhoushan: Zhejiang Ocean University, 2017.
18 许成顺, 高畄成, 陈苏, 等 考虑地震动持时的液化场地−桩基振动台试验设计[J]. 地震工程与工程振动, 2017, 37 (5): 51- 57
XU Cheng-shun, GAO Liu-cheng, CHEN Su, et al Shaking-table tests design on a liquefaction foundation-structure considering compressed ground motion[J]. Earthquake Engineering and Engineering Dynamics, 2017, 37 (5): 51- 57
19 AZADI M, MIR MOHAMMAD HOSSEINI S M Analyses of the effect of seismic behavior of shallow tunnels in liquefiable grounds[J]. Tunnelling and Underground Space Technology, 2010, 25 (5): 543- 552
doi: 10.1016/j.tust.2010.03.003
20 刘春晓, 陶连金, 边金, 等 可液化土层对地下结构地震反应的影响研究[J]. 铁道标准设计, 2018, 62 (2): 133- 139
LIU Chun-xiao, TAO Lian-jin, BIAN Jin, et al Research on seismic response of underground structure on liquefiable soil[J]. Railway Standard Design, 2018, 62 (2): 133- 139
21 LIU C X, TAO L J, BIAN J, et al Influence of the liquefied soil layer distribution on the seismic response of rectangular tunnel[J]. Journal of Southeast University, 2018, 34 (2): 259- 268
22 刘春晓, 陶连金, 边金, 等 可液化土层的位置对土层-地下结构地震反应的影响[J]. 湖南大学学报: 自然科学版, 2017, 44 (5): 143- 156
LIU Chun-xiao, TAO Lian-jin, BIAN Jin, et al Research on seismic response of the soil and underground structure caused by liquefiable soil and different positions[J]. Journal of Hunan University: Natural Sciences, 2017, 44 (5): 143- 156
23 刘春晓, 陶连金, 边金, 等. 可液化土层对土−地下结构地震反应的振动台试验设计[J/OL]. 防灾减灾工程学报(2020-11-19). DOI: 10.13409/j.cnki.jdpme.202004085.
LIU Chun-xiao, TAO Lian-jin, BIAN Jin, et al. Experimental design of shaking table test on seismic response of soil and underground structures on liquefiable soil[J]. Journal of Disaster Prevention and Mitigation Engineering (2020-11-19). DOI: 10.13409/j.cnki.jdpme.202004085.
24 陈苏. 复杂环境下地铁地下结构地震反应特性研究[D]. 南京: 南京工业大学, 2014.
CHEN Su. Seismic response characteristic of underground subway station in complex conditions[D]. Nanjing: Nanjing University of Technology, 2014.
[1] 凌道盛,盛文军,黄博,赵云. 道面单向约束作用对飞机振动响应的影响[J]. 浙江大学学报(工学版), 2021, 55(9): 1684-1693.
[2] 赖杰,刘云,辛建平,王炜,高成强,朱海波. 大理西站支护边坡振动台试验及数值模拟[J]. 浙江大学学报(工学版), 2020, 54(5): 870-878.
[3] 李亚峰,聂如松,冷伍明,程龙虎,梅慧浩,董俊利. 间歇性循环荷载作用下细粒土的变形特性[J]. 浙江大学学报(工学版), 2020, 54(11): 2109-2119.
[4] 董文悝, 高广运, 宋健, 薛帅. 近断层滑冲效应脉冲地震动对场地液化的影响[J]. 浙江大学学报(工学版), 2018, 52(9): 1651-1657.
[5] 夏毅敏, 钱聪, 李正光, 梅勇兵. 隧道掘进机支撑推进系统振动特性[J]. 浙江大学学报(工学版), 2018, 52(2): 233-239.
[6] 张利慧, 董辉, 赵亮. 液化天然气冷能发电复合流程的构建及能效分析[J]. 浙江大学学报(工学版), 2017, 51(7): 1374-1380.
[7] 姜波, 解仑, 刘欣, 韩晶, 王志良. 光流模值估计的微表情捕捉[J]. 浙江大学学报(工学版), 2017, 51(3): 577-583.
[8] 丛晓妍, 王增才, 程军. AMT车辆弯道行驶换挡策略[J]. 浙江大学学报(工学版), 2016, 50(8): 1570-1577.
[9] 沈延斌, 陈岭, 郭浩东, 陈根才. 基于深度学习的放置方式和位置无关运动识别[J]. 浙江大学学报(工学版), 2016, 50(6): 1141-1148.
[10] 金炜枫,张力友,陈小亮,程泽海. 双向激振液化的离散颗粒-流体耦合模拟方法[J]. 浙江大学学报(工学版), 2016, 50(11): 2135-2142.
[11] 赵权利, 孙红月, 尚岳全, 王智磊. 承压水孔压的时空变化对边坡稳定性影响[J]. J4, 2013, 47(8): 1366-1372.
[12] 沈崴,孙荣泽,汤珂,金滔. 基于LNG卫星站冷能利用的小型空分流程[J]. J4, 2013, 47(3): 549-553.
[13] 梁孟根, 梁甜, 陈云敏. 自由场地液化响应特性的离心机振动台试验[J]. J4, 2013, 47(10): 1805-1814.
[14] 马少俊,韩同春,黄福明,王奎华. 地震荷载作用下双层填土的主动土压力计算[J]. J4, 2012, 46(3): 470-475.
[15] 许伯彦,徐娟,齐运亮,蔡少娌. 液化石油气直喷发动机混合气形成的解析[J]. J4, 2011, 45(7): 1232-1238.