Please wait a minute...
浙江大学学报(工学版)
土木工程与水利工程     
双向激振液化的离散颗粒-流体耦合模拟方法
金炜枫,张力友,陈小亮,程泽海
1.浙江科技学院 土木与建筑工程学院,浙江 杭州 310023
2.浙江大学 建筑工程学院, 浙江 杭州 310058
3.浙江大学 滨海和城市岩土工程研究中心, 浙江 杭州 310023
4.杭州市市政工程集团有限公司, 浙江 杭州 310023
Study on liquefaction simulation of coupled particle-fluid assembly subject to bi-directional cyclic loading
JIN Wei feng,ZHANG Li you,CHEN Xiao liang,CHENG Ze hai
1.School of Civil Engineering and Architecture, Zhejiang University of Science and Technology, Hangzhou310023, China;
2.College of Civil Engineering and Architecture,Zhejiang University,Hongzhal 310058,China;
3.Research Center of Coastal and Urban Geotechnical Engineering,Zhejiang University, Hangzhou 310023, China;
4.Hangzhou Municipal Construction Group CO.,LTD,Hangzhou 310023, China
 全文: PDF(1129 KB)   HTML
摘要:

针对离散元模拟动三轴液化时难以施加围压,导致无法实现双向激振液化模拟的问题,提出引入适用的流体方程和有效的伺服围压算法实现动围压加载.针对流体方程,采用包含适用于流体边界网格移动的任意拉格朗日-欧拉描述(ALE)项和流体-颗粒耦合力项的流体方程组|针对伺服围压算法,将离散颗粒-流体伺服体系等效为弹簧-振子模型,采用的围压伺服力函数基于自动控制理论中的HJB方程得到.将流体有限元方程和伺服围压算法嵌入颗粒流软件(PFC2D),通过模拟双向动三轴液化实验,结果表明,该方法可以有效施加动围压,实现双向激振液化的离散颗粒-流体耦合模拟.

Abstract:

For particle-based simulation of liquefaction, it was difficult to apply cell pressure to the particle assembly during dynamic tri-axial test, which resulted in the unaccomplishment of liquefaction simulation under bi-directional loads.  Appropriate dynamic fluid equations and effective cell-pressure servo-control method were introduced in order to apply dynamic cell pressure. As for fluid equations,  they were based on arbitrary Lagrangian-Eulerian description and involved coupled fluid-particle terms. As for servo-control method of cell-pressure,  the optimal feedback control function of controlling cell-pressure was obtained from the Hamilton-Jacobian-Bellman (HJB) Equation established from the spring-mass model by simulating the particle assembly and the servo wall as a spring-mass model. Then coupled fluid-particle based simulation of liquefaction under bi-directional loads during dynamic tri-axial test was realized by adding finite element fluid equations and the servo-control method to the discrete element method software particle flow code 2D (PFC2D), The method  can well apply dynamic cell pressure and accomplish coupled particle-fluid based simulation of liquefaction under bi-directional loads.

出版日期: 2016-11-01
:  TU 435  
基金资助:

 国家自然科学基金资助项目(51408547);浙江省自然科学基金资助项目 (LQ14E080009).

作者简介: 金炜枫(1982-),男,博士,讲师,从事细观土力学等方向研究, ORCID:0000-0002-5943-9830. E-mail:jinweifenga@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

金炜枫,张力友,陈小亮,程泽海. 双向激振液化的离散颗粒-流体耦合模拟方法[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008-973X.2016.11.014.

JIN Wei feng,ZHANG Li you,CHEN Xiao liang,CHENG Ze hai. Study on liquefaction simulation of coupled particle-fluid assembly subject to bi-directional cyclic loading. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008-973X.2016.11.014.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2016.11.014        http://www.zjujournals.com/eng/CN/Y2016/V50/I11/2135

[1] KUHN M R, RENKEN H E, MIXSELL A D, et al. Investigation of cyclic liquefaction with discrete element simulations [J]. Journal Of Geotechnical And Geoenvironmental Engineering, 2014, 140(12):04014075.
[2] GONG G B, ZHA X X. DEM simulation of undrained behaviour with preshearing history for saturated granular media [J]. Modelling and Simulation in Materials Science and Engnieering, 2013, 21(2): 025001.
[3] 史旦达, 周健, 刘文白,等. 循环荷载作用下砂土液化特性的非圆颗粒数值模拟[J].水利学报, 2008, 39(9):1074-1082.
SHI Danda, ZHOU Jian, LIU Wenbai, et al. Numerical simulation of liquefaction of sands with noncircular particle under cyclic loading [J].Shuli Xuebao, 2008, 39(9):1074-1082.
[4] 周健, 杨永香, 刘洋,等. 循环荷载下砂土液化特性颗粒流数值模拟[J].岩土力学, 2009, 30(4):1083-1088.
ZHOU Jian, YONG Yongxiang, LIU Yang, et al. Numerical modeling of sand liquefaction behavior under cyclic loading [J]. Rock and Soil Mechanics, 2009, 30(4):1083-1088.
[5] SHAMY U E, ZEGHAL M, DOBRY R. Micromechanical aspects of liquefactioninduced lateral spreading[J]. International journal of Geomechanics, 2010, 10(5):190-201.
[6] SHAMY U E, ZEHAL M. A micromechanical investigation of the dynamic response and liquefaction of saturated granular soils[J]. Soil Dynamics and Earthquake Engineering, 2007, 27:712-729.
[7] ZEHAL M., SHAMY U E. Liquefaction of saturated loose and cemented granular soils [J]. Powder Technology, 2008, 184:254-265.
[8] 刘洋, 周健, 付建新. 饱和砂土流固耦合细观数值模型及其在液化分析中的应用[J].水利学报, 2009, 40(2):250-256.
LIU Yang, ZHOU Jian, FU Jianxin. Fluidparticle coupled model for saturated sand and its application to liquefaction analysis [J]. Shui Xuebao, 2009, 40(2):250-256.
[9] 金炜枫,周健. 引入流体方程的离散颗粒–连续土体耦合方法研究 [J]. 岩石力学与工程学报, 2015, 34(6):1135-1147.
JIN Weifeng, ZHOU Jian. Coupled discrete-continuous solid with introduction of dynamic equations of fluid [J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(6):11351147.
[10] PAYAN M, SENETAKIS K, KHOSHGHALB A, et al. Influence of particle shape on smallstrain damping ratio of dry sands [J]. Geotechnique, 2016, 66(7):610616.
[11] GUIMOND B A, NAULEAU E, LE K A, et al. Freefree resonance testing of in situ deep mixed soils [J]. Geotechnical Testing Journal, 2013, 36(2):283291.
[12] LIN X Z, ZHU Z Y, ZHANG F, et al. Dynamic elastic modulus for frozen soil from the embankment on Beiluhe Basin along the QinghaiTibet Railway [J]. Cold Regions Science and Technology, 2009, 57(1):712.
[13] CUNDALL P A. PFC user manua l[M]. Minneapolis, Minnesota: Itasca Consulting Group Inc.,2004.
[14] MONTEFUSCOLO F, SOUSA F S, BUSCAGLIA G C. Highorder ALE schemes for incompressible capillary flows [J]. Journal of Computational Physics, 2014, 278:133147.
[15] KANG Y S, KIM J, SOHN D, et al. A new threedimensional variablenode finite element and its application for fluidsolid interaction problems [J]. Computer Methods In Applied Mechanics and Engineering, 281: 81105, 2014.
[16] HSU M C, KAMENSKY D, BAZILEVS Y, et al. Fluidstructure interaction analysis of bioprosthetic heart valves: significance of arterial wall deformation [J]. Computational Mechanics, 2014, 54: 10551071.
[17] VILLONE M M, GRECO F, HULSEN M A, et al. Simulations of an elastic particle in Newtonian and viscoelastic fluids subjected to confined shear flow [J]. Journal of NonNewtonian Fluid Mechnics, 2014, 210: 4755.
[18] BAZILEVS Y, KOROBENKO A, DENG X, et al. FluidStructure Interaction Modeling of VerticalAxis Wind Turbines [J]. Journal of Applied MechanicsTransaction of the ASME, 2014, 81(8): 081006.
[19] FARHAT C, LAKSHMINARAYAN V K. An ALE formulation of embedded boundary methods for tracking boundary layers in turbulent fluidstructure interaction problems[J]. Journal of Computational Physics, 2014, 263:5370.
[20] COTTER C J, HAM D A, PAIN C C, et al. LBB stability of a mixed Galerkin finite element pair for fluid flow simulations [J]. Journal of Computational Physics, 2009, 228(2):336348.
[21] HAN Z L, ZHOU D, TU J H, et al. Flow over two sidebyside square cylinders by CBS finite element scheme of SpalartAllmaras model [J]. Ocean Engineering, 2014, 87:4049.
[22] TAN L, ZHU B S, WANG Y C, et al. Turbulent flow simulation using large eddy simulation combined with characteristicbasedsplit scheme [J]. Computers & Fluids, 2014, 94:161172.
[23] ZIENKIENWICZ O C, TAYLOR R L, NITHIARASU P. The Finite Element Method for Fluid Dynamics(6th Edition)[M]. Singapore: Elsevier (Singapore) Pte Ltd., 2009:79103.
[24] LIU H B. Boundary optimal feedback controller for timeperiodic StokesOseen flows [J]. NodeaNonlinear Differential Equations And Applications, 2014, 21(5):709735.
[25] KORAYEM H, IRANI M. Maximum dynamic load determination of mobile manipulators via nonlinear optimal feedback [J]. Scientific Iranica Transaction BMechanical Engineering, 2010, 17(2):121135.
[26] KORAYEM M H. New optimization method to solve motion planning of dynamic systems: application on mechanical manipulators [J]. Multibody System Dynamics, 2014, 31(2):169189.
[27] EFFATI S, NIK H S, SHIRAZIAN M. An improvement to the homotopy perturbation method for solving the HamiltonJacobiBellman equation[J]. IMA Journal of Mathematical Control and Information, 2013, 30(4):487506.
[28] LIU D R, WANG D, WANG F Y, et al. Neuralnetworkbased online HJB solution for optimal robust guaranteed cost control of continuoustime uncertain nonlinear systems[J]. IEEE Transaction on Cybernetics, 2014, 44(12):28342847.
[29] ZHANG H G, QIN C B, YAN H. NeuralNetworkBased Constrained Optimal Control Scheme for DiscreteTime Switched Nonlinear System Using Dual Heuristic Programming [J]. IEEE Transaction on Automation Science and Engineering, 2014, 11(3):839849.
[30] CHENG T. Neural network solution for fixedfinal time optimal control of nonlinear systems [D]. Arlington: The University of Texas at Arlington,2006.
[31] ASMA A A T. Discreteptime control algorithm and adaptive intelligent systems designs [D]. Arlington: The University of Texas at Arlington,2007.
[32] 张刚. 管涌现象细观机理的模型试验与颗粒流数值模拟研究[D]. 上海: 同济大学, 2007.
ZHANG Gang. Researches on mesoscale mechanism of piping failure by means of model test and PFC numerical simulation [D]. Shanghai: Tongji University, 2007.
[33] WEI L M, YANG J. On the role of grain shape in static liquefaction of sandfines mixtures [J]. Geotechnique, 2014, 64(9):740745.
[34] YANG J, LUO X D. Exploring the relationship between critical state and particle shape for granular materials [J]. Journal of the Mechanics and Physics of Solids, 2015, 84:196213.

[1] 曾晨,孙宏磊,蔡袁强,曹志刚. 饱和土体中衬砌隧道在移动荷载下的动力响应[J]. 浙江大学学报(工学版), 2015, 49(3): 511-521.
[2] 曾晨,孙宏磊,蔡袁强,曹志刚. 饱和土体中衬砌隧道在移动荷载下的动力响应[J]. 浙江大学学报(工学版), 2014, 48(10): 1-2.
[3] 向天勇, 张正红, 闻敏杰, 单胜道. 饱和土中球形沼气池的动力响应[J]. J4, 2014, 48(2): 242-248.
[4] 闻敏杰, 徐金明, 李强. 饱和黏弹性土中端承桩扭转振动的对比分析[J]. J4, 2013, 47(12): 2146-2152.
[5] 高华喜, 闻敏杰, 张斌. 具有圆形隧道的准饱和黏弹性土振动响应[J]. J4, 2013, 47(4): 615-621.
[6] 王鹏, 丁光亚, 蔡袁强, 王军. 考虑埋深的平面波作用下基础振动分析模型[J]. J4, 2012, 46(12): 2224-2230.
[7] 侯键,夏唐代,孙苗苗,孔祥冰. 任意排列的固定刚性桩屏障对SH波的多重散射[J]. J4, 2012, 46(7): 1269-1274.
[8] 蔡袁强,陈成振,孙宏磊. 黏弹性饱和土中隧道在爆炸荷载作用下的动力响应[J]. J4, 2011, 45(9): 1657-1663.
[9] 胡亚元. 考虑次固结时循环荷载引起的软基沉降[J]. J4, 2011, 45(1): 106-111.
[10] 陈国兴, 左熹, 王志华, 杜修力, 孙田. 地铁车站结构近远场地震反应特性振动台试验[J]. J4, 2010, 44(10): 1955-1961.
[11] 胡秀青, 蔡袁强, 徐长节. 饱和地基中埋置基础摇摆振动的动力放大系数[J]. J4, 2010, 44(5): 935-941.