Please wait a minute...
浙江大学学报(工学版)  2019, Vol. 53 Issue (2): 336-346    DOI: 10.3785/j.issn.1008-973X.2019.02.017
水资源与海洋工程     
台阶式地形上双垂板透空系统的水动力学特性
王辰1(),邓争志1,*(),茆大炜2
1. 浙江大学 海洋学院,浙江 舟山 316021
2. 中国电建集团中南勘测设计研究院有限公司,湖南 长沙,410014
Hydrodynamic performance of two vertical plates penetrating system mounted over stepped bottom
Chen WANG1(),Zheng-zhi DENG1,*(),Da-wei MAO2
1. Ocean College, Zhejiang University, Zhoushan 316021, China
2. Power China Zhongnan Engineering Co. Ltd, Changsha 410014, China
 全文: PDF(1943 KB)   HTML
摘要:

基于开源计算流体动力学软件OpenFOAM中的工具箱waves2Foam,通过在双垂板透空系统下方布置不同尺寸的台阶式地形(潜堤),对规则波-双垂板-地形耦合系统的水动力学特性进行数值分析. 在不同入射波况作用下,研究双垂板的间距和台阶式地形的尺寸对结构系统前/后的反/透射系数、波能的黏性耗散率及双垂板间的液面相对振动幅值等水动力参数的影响. 此外,探究波浪非线性对相关水动力参数的影响. 结果表明:合理布置台阶式地形尺寸,如令地形的长度与波长的比值约为1.0,能够有效减小双垂板系统的波能反射和透射,并可获得适中的黏性耗散率;地形的存在会加剧双垂板间的液面振动幅度,有效提升两板间的波能捕获能力;波高的增大会造成反射和透射系数的减小,增大黏性耗散率,降低板间液面振动幅值.

关键词: OpenFOAM双垂板台阶式地形黏性耗散波浪非线性    
Abstract:

The hydrodynamic performance of regular wave-two vertical plates-topography coupled system, comprised by two vertical penetrating plates mounted over a stepped bottom (submerged breakwater) with different dimensions, were analyzed by the use of the toolbox waves2Foam based on the open source software OpenFOAM. The effects of the gap between the two plates and the dimension of the stepped bottom on the hydrodynamic characteristics, such as reflection and transmission coefficients, viscous dissipation ratio of wave energy, and relative oscillating amplitude of the free surface between the two plates, were examined systematically under the action of different incident waves. In addition, the nonlinear effect of wave on the hydrodynamic parameters was investigated. Results showed that a proper dimension of the stepped bottom, for example that the ratio of topography length to wavelength was approximately equal to 1.0, was beneficial for reducing the reflection and transmission coefficients and obtaining a satisfactory viscous dissipation ratio. The presence of the stepped bottom enhances the oscillating amplitude of the free surface between the two plates and effectively improves the capacity of capturing wave energy. Furthermore, the increase of wave height leads to the reduction of the reflection and transmission coefficients, the enhancement of the viscous dissipation ratio, and the drop of the oscillating amplitude of the free surface between the two plates.

Key words: OpenFOAM    two vertical plates    stepped bottom    viscous dissipation    wave nonlinearity
收稿日期: 2018-04-04 出版日期: 2019-02-21
CLC:  O 352  
通讯作者: 邓争志     E-mail: cqhfwchen@zju.edu.cn;zzdeng@zju.edu.cn
作者简介: 王辰(1994—),男,硕士生,从事振荡水柱式波浪能转换研究. orcid.org/0000-0002-2676-2498. E-mail: cqhfwchen@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
王辰
邓争志
茆大炜

引用本文:

王辰,邓争志,茆大炜. 台阶式地形上双垂板透空系统的水动力学特性[J]. 浙江大学学报(工学版), 2019, 53(2): 336-346.

Chen WANG,Zheng-zhi DENG,Da-wei MAO. Hydrodynamic performance of two vertical plates penetrating system mounted over stepped bottom. Journal of ZheJiang University (Engineering Science), 2019, 53(2): 336-346.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2019.02.017        http://www.zjujournals.com/eng/CN/Y2019/V53/I2/336

图 1  数值波浪水槽消波示意图
图 2  网格和时间步长的收敛性测试
T/s x=L x=2L x=3L x=4L x=5L
0.9 0.019 9 0.019 9 0.019 8 0.019 7 0.019 6
1.0 0.019 9 0.019 8 0.019 8 0.019 7 0.019 7
1.1 0.020 0 0.019 8 0.019 8 0.019 9 0.019 9
1.2 0.019 9 0.019 9 0.019 8 0.019 9 0.019 7
表 1  不同周期下距造波边界不同距离处的波高
图 3  入口与出口消波区消波结果
图 4  双垂板模型和波面监测位置示意图
图 5  本研究所得双垂板模型波面数值结果与理论、试验结果[12]的对比
图 6  验证分离反射系数的T型结构物模型
图 7  反射系数分离结果对比
图 8  双垂板变地形模型示意图
工况 固定参数 变化参数Ⅰ 变化参数Ⅱ
1 H=0.02 m, T=1.2 s b/h=0.1,0.2,0.3,0.4,0.5 B/L=0,0.4,0.5,0.6,0.9,1.0,1.1,1.5,2.0
2 b/h=0.1, T=0.9 s H=0.005,0.010,0.015,0.020,0.025 m B/L=0,0.4,0.5,0.6,0.9,1.0,1.1,1.5,2.0
表 2  台阶式地形上双垂板模型计算参数表
图 9  双垂板内部测点波面时间历程曲线
位置属性 测点G ΔL/m 位置属性 测点G ΔL/m
1 3.10 6 11.86
双垂板前定水深 2 7.00 双垂板内部 7 11.95
3 8.00 8 12.04
双垂板前变水深 4 11.60 双垂板后方 9 15.00
5 11.80
表 3  数值波浪水槽中波高监测点位置
图 11  双垂板不同间距比下透射系数随相对顶宽的变化
图 12  双垂板不同间距比下能量耗散率随相对顶宽的变化
图 13  无台阶地形条件下不同时刻的流线图
图 14  有台阶地形条件下不同时刻的流线图
图 10  双垂板不同间距比下反射系数随相对顶宽的变化
图 15  板间相对波高随相对顶宽的变化
图 19  不同入射波波高条件下非线性对双垂板系统能量耗散率的影响
图 16  非线性对双垂板外部和内部高阶波组份的影响
图 17  不同入射波波高条件下非线性对双垂板系统反射系数的影响
图 18  不同入射波波高条件下非线性对双垂板系统透射系数的影响
图 20  不同入射波波高条件下非线性对双垂板系统板间相对波高的影响
1 VICINANZA D, CONTESTABILE P, N?RGAARD J Q H, et al Innovative rubble mound breakwaters for overtopping wave energy conversion[J]. Coastal Engineering, 2014, 88 (3): 154- 170
2 LóPEZ I, ANDREU J, CEBALLOS S, et al Review of wave energy technologies and the necessary power-equipment[J]. Renewable and Sustainable Energy Reviews, 2013, 27 (6): 413- 434
3 VICINANZA D, N?RGAARD J H, CONTESTABILE P, et al Wave loadings acting on overtopping breakwater for energy conversion[J]. Journal of Coastal Research, 2013, 118 (3): 1696- 1674
4 宁德志, 石进, 滕斌, 等 岸式振荡水柱波能转换装置的数值模拟[J]. 哈尔滨工程大学学报, 2014, (7): 789- 794
NING De-zhi, SHI Jin, TENG Bin, et al Numerical simulation of a land-based oscillating water column wave energy conversion device[J]. Journal of Harbin Engineering University, 2014, (7): 789- 794
5 WIEGEL R L Transmission of waves past a rigid vertical thin barrier[J]. Journal of the Waterways and Harbors Division, 1960, 86: 1- 12
6 KRIEBEL D L, BOLLMANN C A. Wave transmission past vertical wave barriers [C]// Coastal Engineering. Orlando : ASCE, 1996: 2470–2483.
7 LOSADA I J, LOSADA M A, ROLDáN A J Propagation of oblique incident waves past rigid vertical thin barriers[J]. Applied Ocean Research, 1992, 14 (3): 191- 199
8 PORTER R, EVANS D V Complementary approximations to wave scattering by vertical barriers[J]. Journal of Fluid Mechanics, 1995, 294: 155- 180
9 USHA R, GAYATHRI T Wave motion over a twin-plate breakwater[J]. Ocean Engineering, 2005, 32 (8): 1054- 1072
10 WANG Ke, ZHANG Zhi-qiang, XU Wang Transmitted and reflected coefficients for horizontal or vertical plate type breakter[J]. China Ocean Engineering, 2011, 25 (2): 285- 294
11 MAJED O A, MOHAMMED A N S, MEDHAT M H Hydrodynamic characteristics of three rows of vertical slotted wall breakwaters[J]. Journal of Marine Science and Application, 2017, 16 (3): 261- 275
12 SHIN D M, CHO Y Diffraction of waves past two vertical thin plates on the free surface: a comparison of theory and experiment[J]. Ocean Engineering, 2016, 124: 274- 286
13 SHEN Y M, WU B J, LIU R, et al Scattering of linear water waves by a fixed and infinitely long rectangular structure parallel to a vertical wall in oblique seas[J]. Journal of Waterway Port Coastal and Ocean Engineering, 2006, 132 (2): 106- 113
14 JU L H, ZUO Q H, TENG L, et al Study on wave dissipation of the structure combined by baffle and submerged breakwater[J]. China Ocean Engineering, 2017, 31 (6): 674- 682
15 RUSCHE H. Computational fluid dynamics of dispersed two-phase flows at high phase fractions [D]. London: Imperial College of London, 2002.
16 DESHPANDE S S, ANUMOLU L, TRUJILLO M F Evaluating the performance of the two-phase flow solver interFoam[J]. Computational Science and Discovery, 2012, 5 (1): 14- 16
17 JASAK H. Error analysis and estimation for the finite volume method with applications to fluid flows [D]. London: Imperial College London, 1996.
18 JACOBSEN N G, FUHRMAN D R, FREDS?E J A wave generation toolbox for the open-source CFD library: OpenFoam?[J]. International Journal for Numerical Methods in Fluids, 2012, 70 (9): 1073- 1088
19 GODA Y, SUZUKI Y Estimation of incident and reflected waves in random wave experiments[J]. Plos One, 2012, 4 (9): 73- 73
20 汪林. 嵌套式振荡水柱波能转换装置的理论研究[D]. 浙江: 浙江大学, 2018.
WANG Lin. Theoretical study on the nested oscillating water column wave energy conversion devices [D]. Zhejiang: Zhejiang University, 2018.
21 ZHAO X, HU C Numerical and experimental study on a 2-D floating body under extreme wave conditions[J]. Applied Ocean Research, 2012, 35 (1): 1- 13
22 乔方利.中国区域海洋学: 物理海洋学[M].北京: 海洋出版社, 2012.
23 NING D Z, WANG R Q, ZOU Q P, et al An experimental investigation of hydrodynamics of a fixed OWC wave energy converter[J]. Applied Energy, 2016, 168: 636- 648
24 LUO Y, NADER J R, COOPER P, et al Nonlinear 2D analysis of the efficiency of fixed oscillating water column wave energy converters[J]. Renewable Energy, 2014, 64 (2): 255- 265
25 ELHANAFI A, FLEMING A, MACFARLANE G, et al Numerical energy balance analysis for an onshore oscillating water column-wave energy converter[J]. Energy, 2016, 116 (1): 539- 557
26 NING D Z, SHI J, ZOU Q P, et al Investigation of hydrodynamic performance of an OWC (oscillating water column) wave energy device using a fully nonlinear HOBEM (higher-order boundary element method)[J]. Energy, 2015, 83: 177- 188
[1] 蒋昌波, 邓涯, 姚宇, 邓斌. 孤立波作用下排柱附近流动特性数值分析[J]. 浙江大学学报(工学版), 2015, 49(8): 1441-1447.