Please wait a minute...
浙江大学学报(工学版)  2022, Vol. 56 Issue (9): 1833-1844    DOI: 10.3785/j.issn.1008-973X.2022.09.017
机械工程     
脂润滑齿轮齿条增程机构的动态特性
陈志群1(),钱林方1,2,*(),朱一宬1
1. 南京理工大学 机械工程学院,江苏 南京 210094
2. 西北机电工程研究所,陕西 咸阳 712099
Dynamic characteristics of pinion and rack stroke-increment mechanism with grease lubrication
Zhi-qun CHEN1(),Lin-fang QIAN1,2,*(),Yi-cheng ZHU1
1. School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
2. Northwest Institute of Mechanical and Electrical Engineering, Xianyang 712099, China
 全文: PDF(2822 KB)   HTML
摘要:

为了准确地获得脂润滑条件下齿轮齿条的动态特性,考虑齿轮齿条啮合时的结构时变啮合刚度和瞬态热弹流润滑刚度的耦合影响,建立结构?脂膜耦合啮合刚度模型,推导受摩擦影响的齿轮齿条增程机构的动力学方程. 分析齿轮齿条机构及脂膜的动态特性,数值结果表明:在考虑润滑脂的瞬态热弹流效应后,轮齿的啮合总刚度比结构时变啮合刚度低;且法向啮合力越小,总刚度值越低. 中心膜厚、中心压应力均具有高频波动特性,并随着当量曲率半径的增加分别呈上升与下降的趋势. 最恶劣润滑状态出现在齿轮轮齿面上靠近基圆的位置,此处的脂膜温升最高,脂膜压应力最大,脂膜厚度最薄. 摩擦系数在齿轮齿条传动速度较大的中间时段比起始与末端时段的低,在啮合点靠近节点位置时明显下降.

关键词: 齿轮齿条机构脂润滑啮合刚度热弹流润滑油膜特性摩擦    
Abstract:

In order to accurately obtain the dynamic characteristics of the pinion and rack under grease lubrication condition, a structure-grease film coupling meshing stiffness model was presented, which took both the structural time-varying meshing stiffness and transient thermal elastohydrodynamic lubrication stiffness during the meshing process of the rack and pinion into account, the dynamics equations of the pinion and rack stroke-increment mechanism involving the friction were formulated. The dynamic characteristics of pinion and rack mechanism and grease film were analyzed, the numerical results showed that total meshing stiffness between gear teeth was lower than the time-varying meshing stiffness of structure when the transient thermal elastohydrodynamic effect of grease was considered. With the decreasing of the normal meshing force, the total stiffness also reduced. Generally speaking, with the increase of the equivalent radius of curvature, the center film thickness became more thicker and the center pressure decreased. Both of them showed high frequency fluctuation characteristics. The worst lubrication state occurred on the gear tooth flank near the base circle where the temperature rise and pressure of the grease film were the highest, thickness were the thinnest. The friction coefficient was lower in the middle period with higher rack and pinion drive velocity than that in start and end periods, and it decreased obviously when the meshing point was close to pitch point.

Key words: pinion and rack mechanism    grease lubrication    mesh stiffness    thermal elastohydrodynamic lubrication    oil film characteristics    friction
收稿日期: 2021-09-22 出版日期: 2022-09-28
CLC:  TH 132.4  
基金资助: 国家自然科学基金资助项目(11472137)
通讯作者: 钱林方     E-mail: zqchen_njust@163.com;lfqian@njust.edu.cn
作者简介: 陈志群(1991—),男,博士生,从事机械传动机构设计与研究. orcid.org/0000-0003-3671-5780. E-mail: zqchen_njust@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
陈志群
钱林方
朱一宬

引用本文:

陈志群,钱林方,朱一宬. 脂润滑齿轮齿条增程机构的动态特性[J]. 浙江大学学报(工学版), 2022, 56(9): 1833-1844.

Zhi-qun CHEN,Lin-fang QIAN,Yi-cheng ZHU. Dynamic characteristics of pinion and rack stroke-increment mechanism with grease lubrication. Journal of ZheJiang University (Engineering Science), 2022, 56(9): 1833-1844.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2022.09.017        https://www.zjujournals.com/eng/CN/Y2022/V56/I9/1833

图 1  齿轮齿条增程机构示意图
图 2  结构−脂膜耦合啮合刚度模型
参数 数值 参数 数值 参数 数值
$ L_1^{{\rm{p}}} $ 3.922 6 $ Q_3^{{\rm{p}}} $ 0.409 5 $ T_2^{{\rm{r}}} $ ?0.285 7
$M_1^{{\rm{p}}}$ 1.625 4 $ R_3^{{\rm{p}}} $ 0.330 8 $ U_2^{{\rm{r}}} $ 0.104 0
$ P_1^{{\rm{p}}} $ 2.697 9 $ S_3^{{\rm{p}}} $ 0.236 8 $ V_2^{{\rm{r}}} $ 0.577 7
$ Q_1^{{\rm{p}}} $ 0.434 7 $ T_3^{{\rm{p}}} $ 0.085 1 $ QH_2^{{\rm{r}}} $ 0.104 0
$ L_2^{{\rm{p}}} $ ?0.511 4 $ U_3^{{\rm{p}}} $ ?0.080 4 $ MH_2^{{\rm{r}}} $ 0.577 7
$ M_2^{{\rm{p}}} $ 0.339 7 $ V_3^{{\rm{p}}} $ 1.685 9 $ L_3^{{\rm{r}}} $ 1.440 4
$ P_2^{{\rm{p}}} $ 0.330 8 $ L_1^{{\rm{r}}} $ ?1.248 0 $ M_3^{{\rm{r}}} $ 0.095 2
$ Q_2^{{\rm{p}}} $ 0.330 8 $ M_1^{{\rm{r}}} $ ?0.071 4 $ Q_3^{{\rm{r}}} $ ?0.096 7
$ R_2^{{\rm{p}}} $ 0.330 8 $ P_1^{{\rm{r}}} $ 0.322 6 $ S_3^{{\rm{r}}} $ ?0.118 2
$ S_2^{{\rm{p}}} $ 0.236 8 $ Q_1^{{\rm{r}}} $ 2.007 9 $ T_3^{{\rm{r}}} $ 0.285 7
$ T_2^{{\rm{p}}} $ ?0.085 1 $ LH_1^{\rm{r}} $ 0.357 1 $ U_3^{{\rm{r}}} $ ?0.104 0
$ U_2^{{\rm{p}}} $ 0.080 4 $ MH_1^{{\rm{r}}} $ 2.007 9 $ V_3^{{\rm{r}}} $ 0.577 7
$ V_2^{{\rm{p}}} $ 1.685 9 $ L_2^{{\rm{r}}} $ 1.440 4 $ QH_3^{{\rm{r}}} $ ?0.104 0
$ L_3^{{\rm{p}}} $ ?0.511 4 $ M_2^{{\rm{r}}} $ ?0.095 2 $ MH_3^{{\rm{r}}} $ 0.577 7
$ M_3^{{\rm{p}}} $ ?0.399 7 $ Q_2^{{\rm{r}}} $ 0.096 7
$ P_3^{{\rm{p}}} $ 0.330 8 $ S_2^{{\rm{r}}} $ ?0.118 2
表 1  结构耦合刚度的常系数项
图 3  考虑耦合现象的变形协调条件
图 4  啮合点脂润滑热弹流膜示意图
参数 数值 参数 数值
齿轮质量 ${m_{{\rm{p}}} }/{{\rm{kg}}}$ 4.91 齿宽 $b/{{\rm{mm}}}$ 20
齿轮转动惯量 ${I}_{\mathrm{p} }/(\rm{kg} \cdot {{\rm{m}}}^{2})$ 4.2×10?4 弹性模量 $ E/{\text{GPa}} $ 207
上侧齿条质量 ${m_{{\rm{r}}} }/{ {\rm{kg} } }$ 12.91 泊松比 $\; \mu $ 0.3
模数 ${\rm{ m}}/{{\rm{mm}}}$ 3 齿侧间隙 $2\bar D/{{\rm{mm}}}$ 0.10
齿轮齿数 $ z $ 20
表 2  齿轮齿条结构参数
名称 c/
(J·kg·K?1)
k/
(W·m?1·K?1)
ρ/
(kg·m?3)
ρT/
(m·k?1)
φ0/
(Pa·sn)
n
齿轮 470 46 7850
齿条 470 46 7850
润滑脂 1646 0.14 880 0.00065 8.634 0.754
表 3  润滑脂的流变参数( ${T_0} = {303 }{}$ K)和齿轮齿条传动系统的热力学参数
图 5  脂润滑齿轮齿条动力学模型求解流程图
图 6  上齿条的位移曲线和速度曲线
图 7  齿轮与上齿条在第2齿啮合周期内的啮合状态特性
图 8  齿轮与上齿条在第8齿啮合周期内的啮合状态特性
图 9  上侧齿条的总摩擦系数
图 10  第2齿啮合过程中摩擦系数的变化
图 11  齿轮齿条啮合有限元模型
图 12  第2齿的啮合刚度对比
1 石建飞, 苟向锋, 朱凌云 计及摩擦的多状态啮合渐开线直齿轮系统动力学建模分析[J]. 西北工业大学学报, 2020, 38 (2): 401- 411
SHI Jian-fei, GOU Xiang-feng, ZHU Ling-yun Dynamic modeling and analysis of involute spur gear transmission system considering friction and multi–state meshing conditions[J]. Journal of Northwestern Polytechnical University, 2020, 38 (2): 401- 411
doi: 10.3969/j.issn.1000-2758.2020.02.022
2 KAHRAMAN A, SINGH R Non-linear dynamics of a spur gear pair[J]. Journal of Sound and Vibrations, 1990, 142 (1): 49- 75
doi: 10.1016/0022-460X(90)90582-K
3 KAHRAMAN A, BLANKENSHIP G W Experiments on nonlinear dynamic behavior of an oscillator with clearance and periodically time-varying parameters[J]. Journal of Applied Mechanics, 1997, 64 (1): 217- 226
doi: 10.1115/1.2787276
4 BARTELMUS W Mathematical modelling and computer simulations as an aid to gearbox diagnostics[J]. Mechanical Systems and Signal Processing, 2001, 15 (5): 855- 871
doi: 10.1006/mssp.2001.1411
5 ZHU L Y, SHI J F, GOU X F Modeling and dynamics analyzing of a torsional-bending-pendular face-gear drive system considering multi-state engagements[J]. Mechanism and Machine Theory, 2020, 149: 103790
doi: 10.1016/j.mechmachtheory.2020.103790
6 XIE C Y, SHU X D A new mesh stiffness model for modified spur gears with coupling tooth and body flexibility effects[J]. Applied Mathematical Modelling, 2020, 91: 1194- 1210
7 BARBIERI M, LUBRECHT A A, PELLICANO F Behavior of lubricant fluid film in gears under dynamic conditions[J]. Tribology International, 2013, 62: 37- 48
doi: 10.1016/j.triboint.2013.01.017
8 黄立, 胡元中, 王文中 斜齿轮非稳态等温弹流润滑数值分析[J]. 润滑与密封, 2009, 34 (7): 23- 27
HUANG Li, HU Yuan-zhong, WANG Wen-zhong Numerical analysis of transient elastohydrodynamic lubrication of helical gears[J]. Lubrication Engineering, 2009, 34 (7): 23- 27
doi: 10.3969/j.issn.0254-0150.2009.07.006
9 DE LA CRUZ M, CHONG W W F, TEODORESCU M, et al Transient mixed thermo-elastohydrodynamic lubrication in multi-speed transmissions[J]. Tribology International, 2012, 49: 17- 29
doi: 10.1016/j.triboint.2011.12.006
10 菅光霄, 王优强, 于晓, 等 振动与接触冲击耦合作用下的齿轮弹流润滑研究[J]. 振动与冲击, 2020, 39 (21): 226- 232
JIAN Guang-xiao, WANG You-qiang, YU Xiao, et al Elasto-hydrodynamic lubrication of gears under coupling of vibration and contact impact[J]. Journal of vibration and shock, 2020, 39 (21): 226- 232
doi: 10.13465/j.cnki.jvs.2020.21.030
11 TAO J, WEN A, LIU Z, et al Lean lubrication of ultra large modulus open gear and rack pair: a case study of the gear-rack drive mechanism of the Chinese "Three Gorge Dam" ship lift[J]. Journal of Cleaner Production, 2021, 282: 124450
doi: 10.1016/j.jclepro.2020.124450
12 温诗铸, 杨沛然. 弹性流体动力润滑 [M]. 北京: 清华大学出版社, 1992: 262-269.
13 XIE C Y, LIN H, HAN X H, et al Analytical formulas for gear body-induced tooth deflections of spur gears considering structure coupling effect[J]. International Journal of Mechanical Sciences, 2018, 148: 174- 190
doi: 10.1016/j.ijmecsci.2018.08.022
14 YU W N, MECHEFSKE C K Analytical modeling of spur gear corner contact effects[J]. Mechanism and Machine Theory, 2016, 96: 146- 164
doi: 10.1016/j.mechmachtheory.2015.10.001
15 MUNRO R G, MORRISH L, PALMER D Gear transmission error outside the normal path of contact due to corner and top contact[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 1999, 213 (4): 389- 400
doi: 10.1243/0954406991522347
16 TSE D K, LIN H H. Separation distance and static transmission error of involute spur gears [C]// AIAA/SAE/ASME/ASEE 28th Joint Propulsion Conference and Exhibit. Nashville: [s.n.], 1992: 3490.
17 YOO J G, KIM K W Numerical analysis of grease thermal elastohydrodynamic lubrication problems using the Herschel-Bulkley model[J]. Tribology International, 1997, 30 (6): 401- 408
doi: 10.1016/S0301-679X(96)00069-2
18 吴正海, 徐颖强, 刘楷安, 等 圆锥滚子轴承滚子/滚道副的脂润滑热成膜性能[J]. 浙江大学学报:工学版, 2020, 54 (3): 459- 466
WU Zheng-hai, XU Ying-qiang, LIU Kai-an, et al Thermal film-forming ability of grease lubrication at roller-raceway pair in tapered roller bearings[J]. Journal of Zhejiang University:Engineering Science, 2020, 54 (3): 459- 466
19 KAUZLARICH J J, GREENWOOD J A Elastohydrodynamic lubrication with Herschel-Bulkley model greases[J]. Tribology Transactions, 1972, 15 (4): 269- 277
20 GU C X, MENG X H, XIE Y B, et al Effects of surface texturing on ring/liner friction under starved lubrication[J]. Tribology International, 2016, 94: 591- 605
doi: 10.1016/j.triboint.2015.10.024
21 WANG S, ZHU R An improved mesh stiffness model for double-helical gear pair with spalling defects considering time-varying friction coefficient under mixed EHL[J]. Engineering Failure Analysis, 2021, 121: 105174
doi: 10.1016/j.engfailanal.2020.105174
22 GREENWOOD J A, TRIPP J H The Contact of Two Nominally Flat Rough Surfaces[J]. Proceedings of the Institution of Mechanical Engineers, 1970, 185 (1): 625- 634
doi: 10.1243/PIME_PROC_1970_185_069_02
[1] 龚涛,刘开富,谢新宇,许纯泰,娄扬,郑凌逶. 基于次加载面摩擦模型的接触面剪切特性研究[J]. 浙江大学学报(工学版), 2022, 56(7): 1328-1335, 1352.
[2] 李曦,胡健,姚建勇,魏科鹏,王鹏飞,邢浩晨. 基于观测器摩擦补偿的机电系统高精度控制[J]. 浙江大学学报(工学版), 2021, 55(6): 1150-1158.
[3] 张铁,胡亮亮,邹焱飚. 基于混合遗传算法的机器人改进摩擦模型辨识[J]. 浙江大学学报(工学版), 2021, 55(5): 801-809.
[4] 战友,李强,马啸天,王郴平,邱延峻. 基于宏微观纹理特征融合的路面摩擦性能预测[J]. 浙江大学学报(工学版), 2021, 55(4): 684-694.
[5] 曹伟,蒲伟,万一品,王迪,刘存波. 任意卷吸速度矢量点接触摩擦系数简化计算方法[J]. 浙江大学学报(工学版), 2021, 55(12): 2307-2314.
[6] 徐建明,赵智鹏,董建伟. 连杆侧无传感器下机器人柔性关节系统的零力控制[J]. 浙江大学学报(工学版), 2020, 54(7): 1256-1263.
[7] 吴正海,徐颖强,刘楷安,赵兴. 圆锥滚子轴承滚子/滚道副的脂润滑热成膜性能[J]. 浙江大学学报(工学版), 2020, 54(3): 459-466.
[8] 戴显荣,王路,王昌将,王晓阳,沈锐利. 多塔悬索桥全竖向摩擦板式抗滑方案[J]. 浙江大学学报(工学版), 2019, 53(9): 1697-1703.
[9] 符升平,李胜波,罗宁,Roman Nikolaevich Polyakov. 换挡工况下湿式换挡离合器变胞机理[J]. 浙江大学学报(工学版), 2019, 53(4): 628-637.
[10] 李智靖,叶锦华,吴海彬. 基于卷积力矩观测器与摩擦补偿的机器人碰撞检测[J]. 浙江大学学报(工学版), 2019, 53(3): 427-434.
[11] 秦钟伟,陈捷,洪荣晶,吴伟伟. 摩擦片表面缺陷的视觉显著性检测算法[J]. 浙江大学学报(工学版), 2019, 53(10): 1883-1891.
[12] 赵人达, 贾毅, 占玉林, 王永宝, 廖平, 李福海, 庞立果. 强震区多跨长联连续梁桥减隔震设计[J]. 浙江大学学报(工学版), 2018, 52(5): 886-895.
[13] 王菲菲, 徐颖强, 刘楷安. 粗糙表面切向接触刚度概率分析方法[J]. 浙江大学学报(工学版), 2018, 52(2): 255-260.
[14] 胡成宝, 凌道盛, 巩师林, 石吉森, 韩超, 丁志锋. 基于砂土状态和细观特征的剪切带倾角公式[J]. 浙江大学学报(工学版), 2018, 52(11): 2068-2076.
[15] 赵斌, 张松, 李剑峰. 基于零件摩擦学性能的磨削参数优化[J]. 浙江大学学报(工学版), 2018, 52(1): 16-23.