Please wait a minute...
浙江大学学报(工学版)  2021, Vol. 55 Issue (11): 2076-2083    DOI: 10.3785/j.issn.1008-973X.2021.11.007
机械工程     
增材制造点阵结构的超声共振谱性能表征
孙朝明(),孙凯华,王国伟,葛继强,梁恩辅
中国工程物理研究院 机械制造工艺研究所,四川 绵阳 621900
Resonant ultrasound spectroscopy evaluation of additively manufactured lattice structure
Chao-ming SUN(),Kai-hua SUN,Guo-wei WANG,Ji-qiang GE,En-fu LIANG
Institute of Machinery Manufacturing Technology, China Academy of Engineering Physics, Mianyang 621900, China
 全文: PDF(1083 KB)   HTML
摘要:

为了实现增材制造的点阵构件性能的可靠、快捷评判,优选超声共振谱技术进行检测方法研究. 使用增材制造工艺,制作了一系列Ti-6Al-4V的点阵结构试样,结构内含有不同宽度的平面型缺陷. 基于自建的超声共振谱检测系统开展试验,利用纵波超声换能器作为振动的激励源与接收传感器. 对共振频率与振动模态进行甄别,选取可靠的共振频率组合作为评判指标,构建马氏空间,按马氏距离对缺陷进行定量分析. 试验结果表明,虽然点阵试样结构复杂,但仍可以测得清晰明显的共振频率峰,且测量结果重现性好. 结果分析表明,点阵试样的共振频率峰位置与缺陷尺寸大小有强相关性,采用马氏距离可以实现缺陷的定量评价. 研究表明,超声共振谱技术为增材制造的复杂点阵构件的性能表征提供了较好的无损检测(NDT)解决方案.

关键词: 增材制造点阵结构超声共振谱共振频率马氏距离    
Abstract:

Resonant ultrasound spectroscopy (RUS) was optimistically selected to study feasibility and implementation details of the testing method, in order to accomplish reliable and quick evaluation of the lattice components additively manufactured. A series of lattice structures of Ti-6Al-4V which contains planar defects of different widths was manufactured by additive manufacturing process. Experiments were carried out based on a home-made RUS system, and longitudinal ultrasonic transducers were used as the transmitter and receiver. The resonant frequencies and vibration modes were identified by setting suitable experimental parameters, and then a reliable combination of resonant frequencies was chosen to evaluate the defects by constructing a Mahalanobis space. Finally, the Mahalanobis distance was calculated for each specimen and defects were analyzed quantitatively. Experimental results show that resonant frequency peaks can be detected obviously and repeatedly even for the lattice components with complex structures. Results show that there is a strong correlation between positions of certain resonant frequency peak and the size of defect. Comparing with traditional non-destruction testing (NDT) method, RUS provides a favorable NDT solution for the lattice structure additively manufactured.

Key words: additive manufacturing    lattice structure    resonant ultrasound spectroscopy    resonant frequency    Mahalanobis distance
收稿日期: 2021-01-14 出版日期: 2021-11-05
CLC:  O 422.6  
基金资助: 国家自然科学技术基金委员会-中国工程物理研究院联合基金资助项目(1930207)
作者简介: 孙朝明(1977—),男,高级工程师,硕士,从事超声检测技术研究. orcid.org/0000-0002-0422-4795. E-mail: chm_sun@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
孙朝明
孙凯华
王国伟
葛继强
梁恩辅

引用本文:

孙朝明,孙凯华,王国伟,葛继强,梁恩辅. 增材制造点阵结构的超声共振谱性能表征[J]. 浙江大学学报(工学版), 2021, 55(11): 2076-2083.

Chao-ming SUN,Kai-hua SUN,Guo-wei WANG,Ji-qiang GE,En-fu LIANG. Resonant ultrasound spectroscopy evaluation of additively manufactured lattice structure. Journal of ZheJiang University (Engineering Science), 2021, 55(11): 2076-2083.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2021.11.007        https://www.zjujournals.com/eng/CN/Y2021/V55/I11/2076

图 1  点阵结构试样模型
图 2  DZ-0.1试样的CT检测图像
图 3  超声共振检测示意图
序号 f/kHz 序号 f/kHz
1 53.8 6 70.5
2 57.6 7 72.2
3 60.6 8 74.2
4 62.1 9 78.0
5 65.5 10 79.5
表 1  DZ-0.6试样的共振频率
图 4  试样的不同振动模态
图 5  DZ-0.6试样的测量频谱
图 6  多个试样的超声共振频谱
图 7  共振频率结果对比
图 8  频率4、7的相互关系
图 9  按马氏距离评判试样
图 10  不同缺陷类型的马氏距离对比
1 KING W E, ANDERSON A T, FERENCZ R M, et al Laser powder bed fusion additive manufacturing of metals: physics, computational, and materials challenges[J]. Applied Physics Review, 2015, 2: 041304
doi: 10.1063/1.4937809
2 FROES F, BOYER R. Additive manufacturing for the aerospace industry [M]. Chennai: Elsevier, 2019.
3 汤海波, 吴宇, 张述泉, 等 高性能大型金属构件激光增材制造技术研究现状与发展趋势[J]. 精密成形工程, 2019, 11 (4): 58- 63
TANG Hai-Bo, WU Yu, ZHANG Shu-quan, et al Research status and development trend of high performance large metallic components by laser additive manufacturing technique[J]. Journal of Netshape Forming Engineering, 2019, 11 (4): 58- 63
doi: 10.3969/j.issn.1674-6457.2019.04.008
4 DIEGEL O, NORDIN A, MOTTE D. A practical guide to design for additive manufacturing [M]. Singapore: Springer, 2020.
5 杨平华, 高祥熙, 梁菁, 等 金属增材制造技术发展动向及无损检测研究进展[J]. 材料工程, 2017, 45 (9): 13- 21
YANG Ping-hua, GAO Xiang-xi, LIANG Jing, et al Development trend and NDT progress of metal additive manufacture technique[J]. Journal of Materials Engineering, 2017, 45 (9): 13- 21
doi: 10.11868/j.issn.1001-4381.2016.001226
6 吴正凯, 吴圣川, 张杰, 等 基于同步辐射X射线成像的选区激光熔化Ti-6Al-4V合金缺陷致疲劳行为[J]. 金属学报, 2019, 55 (7): 811- 820
WU Zheng-kai, WU Sheng-chuan, ZHANG Jie, et al Defect induced fatigue behaviors of selective laser melted Ti-6Al-4V via synchrotron radiation X-ray tomography[J]. Acta Metallurgica Sinica, 2019, 55 (7): 811- 820
doi: 10.11900/0412.1961.2018.00408
7 ZHOU X, DAI N, CHU M, et al X-ray CT analysis of the influence of process on defect in Ti-6Al-4V parts produced with selective laser melting technology[J]. The International Journal of Advanced Manufacturing Technology, 2020, 106 (1/2): 3- 14
8 THOMPSON A, MASKERY I, LEACH R K X-ray computed tomography for additive manufacturing: a review[J]. Measurement Science and Technology, 2016, 27: 072001
doi: 10.1088/0957-0233/27/7/072001
9 BECERRA P A I H, ORDAZ M B, LUNA M V, et al Comparison of time-domain and frequency-domain contact resonant ultrasound spectroscopy[J]. Instruments and Experimental Techniques, 2019, 62 (2): 241- 246
doi: 10.1134/S0020441219020118
10 SCHWARZ R B, VUORINEN J F Resonant ultrasound spectroscopy: applications, current status and limitations[J]. Journal of Alloys and Compounds, 2000, 310: 243- 250
doi: 10.1016/S0925-8388(00)00925-7
11 MAYNARD J Resonant ultrasound spectroscopy[J]. Physics Today, 1996, 49 (1): 26- 31
doi: 10.1063/1.881483
12 MIGLIORI A, MAYNARD J D Implementation of a modern resonant ultrasound spectroscopy system for the measurement of the elastic moduli of small solid specimens[J]. Review of Scientific Instruments, 2005, 76: 121301
doi: 10.1063/1.2140494
13 冯丹丹, 樊璠, 王蕊, 等 基于超声共振谱方法的人牙釉质材料力学特性研究[J]. 医用生物力学, 2017, 32 (5): 448- 453
FENG Dan-dan, FAN Fan, WANG Rui, et al Mechanical properties of human enamel based on resonant ultrasound spectroscopy[J]. Journal of Medical Biomechanics, 2017, 32 (5): 448- 453
14 DRIVER S L, JONES N G, STONE H J, et al On the effect of hydrogen on the elastic moduli and acoustic loss behaviour of Ti-6Al-4V[J]. Philosophical Magazine, 2016, 96 (22): 2311- 2327
doi: 10.1080/14786435.2016.1198054
15 FLYNN K, RADOVIC M Evaluation of defects in materials using resonant ultrasound spectroscopy[J]. Journal of Materials Science, 2011, 46: 2548- 2556
doi: 10.1007/s10853-010-5107-y
16 GOODLET B R, TORBET C J, BIEDERMANN E J, et al Forward models for extending the mechanical damage evaluation capability of resonant ultrasound spectroscopy[J]. Ultrasonics, 2017, 77: 183- 196
doi: 10.1016/j.ultras.2017.02.002
17 MIGLIORI A, DARLING T W Resonant ultrasound spectroscopy for materials studies and non-destructive testing[J]. Ultrasonics, 1996, 34: 473- 476
doi: 10.1016/0041-624X(95)00120-R
18 RETTBERG L H, GOODLET B R, POLLOCK T M Detecting recrystallization in a single crystal Ni-base alloy using resonant ultrasound spectroscopy[J]. NDT and E International, 2016, 83: 68- 77
doi: 10.1016/j.ndteint.2016.05.004
19 HEFFERNAN J, JAURIQUI L, BIEDERMANN E, et al Process compensated resonance testing models for quantification of creep damage in single crystal nickel-based superalloys[J]. Materials Evaluation, 2017, 75: 941- 952
20 SCHWARZ J, SAXTON J, JAURIQUI L Process compensated resonant testing in manufacturing process control[J]. Materials Evaluation, 2005, 63: 736- 739
21 SIDAMBE A T, CHOONG W L, HAMILTON H G C, et al Correlation of metal injection moulded Ti6Al4V yield strength with resonance frequency (PCRT) measurements[J]. Materials Science and Engineering: A, 2013, 568: 220- 227
doi: 10.1016/j.msea.2013.01.040
22 LEISURE R G, WILLIS F A Resonant ultrasound spectroscopy[J]. Journal of Physics of Condensed Matter, 1997, 9: 6001- 6029
doi: 10.1088/0953-8984/9/28/002
23 DEMAREST H H Cube-resonance method to determine the elastic constants of solids[J]. Journal of the Acoustical Society of America, 1971, 49 (3): 768- 775
24 NAKAMURA N, OGI H, HIRAO M Review on acoustic transducers for resonant ultrasound spectroscopy[J]. Jom, 2015, 67 (8): 1849- 1855
doi: 10.1007/s11837-015-1457-x
25 OGI H, SATO K, ASADA T, et al Complete mode identification for resonance ultrasound spectroscopy[J]. Journal of the Acoustical Society of America, 2002, 112 (6): 2553- 2557
doi: 10.1121/1.1512700
26 CHEN Z, MIAO X, LI S, et al Data fusion method and probabilistic pairing approach in elastic constants measurement by resonance ultrasound spectroscopy[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 69 (6): 2948- 2958
doi: 10.1109/TIM.2019.2925409
[1] 刘晓伟,陈赟,张思,陈康. FDM型增材制造中送丝机构动态监测与识别[J]. 浙江大学学报(工学版), 2021, 55(3): 548-554.
[2] 杨立宁,张永弟,王金业,常宏杰,杨光. 连续碳纤维增强金属基复合材料增材制造工艺[J]. 浙江大学学报(工学版), 2021, 55(11): 2084-2090.
[3] 李斌,傅建中. 基于三维T样条的异质材料实体建模与切片[J]. 浙江大学学报(工学版), 2021, 55(1): 135-144.
[4] 杜军,马琛,魏正英. 基于视觉传感的铝合金电弧增材沉积层形貌动态响应[J]. 浙江大学学报(工学版), 2020, 54(8): 1481-1489.
[5] 邵惠锋, 贺永, 傅建中. 增材制造可降解人工骨的研究进展——从外形定制到性能定制[J]. 浙江大学学报(工学版), 2018, 52(6): 1035-1057.
[6] 杜军, 王鑫, 任传奇, 白浩. 金属熔融涂覆成形薄壁件表面形貌与工艺[J]. 浙江大学学报(工学版), 2018, 52(1): 24-28.
[7] 刘震涛,张鹏伟,俞小莉,李建锋,陈占善. 发动机机体疲劳裂纹诊断的时序方法[J]. J4, 2012, 46(3): 489-493.
[8] 唐凯 刘瑞兰 苏宏业 褚健. 基于多元统计过程控制的故障识别方法[J]. J4, 2005, 39(5): 663-667.