Please wait a minute...
Journal of Zhejiang University (Agriculture and Life Sciences)  2022, Vol. 48 Issue (6): 787-796    DOI: 10.3785/j.issn.1008-9209.2022.06.061
Research articles     
Effects of high dose sex pheromone on courtship, mating and oviposition of Chilo suppressalis (Walker) in the wind tunnel
Qianshuang GUO1(),Liling CHEN2,Hua SUI3,Bin YANG3,Fuyan ZHUO4,Xiaoming ZHU4,Rong GUO4,Yongjun DU1()
1.Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
2.Jilin Province Agricultural Technology Extension Station, Changchun 130023, China
3.Agricultural Ecological Resource Environment and Rural Energy Management Station of Meihekou City in Jilin Province, Tonghua 135000, Jilin, China
4.National Extension and Service Center of Agricultural Technology, Beijing 100125, China
Download: HTML   HTML (   PDF(2547KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

To explore the courtship, mating and oviposition behavior of Chilo suppressalis (Walker) in a high dose sex pheromone environment, the mating disruption was simulated in a wind tunnel, and the sex pheromone titers were analyzed in combination with behavioral observation and chemical methods. The results showed that in the wind tunnel, the high dose of Z11-16:Ald and the ternary blend [m(Z11-16:Ald)∶ m(Z9-16:Ald)∶m(Z13-18:Ald)=10∶1∶1.2] of 3.1 mg per spraying significantly inhibited the mating rates and sex pheromone titers of female moths, but no significant differences were found between the two treatments. There were no significant differences in the number of mating pairs of male and female moths and the time interval between each spraying. The mating rates of male moths with the removal of antennae decreased to (8.3±1.1)% and (10.0±8.9)%, respectively, in the environment of spraying or not spraying high dose Z11-16:Ald. The number of laid eggs and egg hatching rates were not affected in the high dose sex pheromone environment. The ages of female moths significantly affected the mating rates with male moths. The mating rates of 1, 3 and 5 day-old female moths with 1 day-old male moths were (60.0±5.2)%, (31.7±6.0)%, and (8.3±3.1)%, respectively. The number of laid eggs and egg hatching rates of female moths decreased with the ages. In conclusion, the high dose sex pheromone Z11-16:Ald and complete blend can inhibit the mating rates and sex pheromone titers of C. suppressalis, and have no impact on the number of laid eggs and egg hatching rates of female moths, but the ages of female moths can affect the number of laid eggs and egg hatching rates; and the decrease in mating rates might be related to the inactivation of olfactory system of male moths.



Key wordsChilo suppressalis (Walker)      sex pheromone      mating disruption      mating      oviposition      age     
Received: 06 June 2022      Published: 27 December 2022
CLC:  S 435.112.1  
Corresponding Authors: Yongjun DU     E-mail: qianshuang@zju.edu.cn;yongjundu@zju.edu.cn
Cite this article:

Qianshuang GUO,Liling CHEN,Hua SUI,Bin YANG,Fuyan ZHUO,Xiaoming ZHU,Rong GUO,Yongjun DU. Effects of high dose sex pheromone on courtship, mating and oviposition of Chilo suppressalis (Walker) in the wind tunnel. Journal of Zhejiang University (Agriculture and Life Sciences), 2022, 48(6): 787-796.

URL:

https://www.zjujournals.com/agr/10.3785/j.issn.1008-9209.2022.06.061     OR     https://www.zjujournals.com/agr/Y2022/V48/I6/787


风洞条件下高剂量性信息素对二化螟求偶、交配和产卵的影响

为了探明在高剂量性信息素环境下二化螟[Chilo suppressalis (Walker)]的求偶、交配和产卵行为,采用风洞试验模拟交配干扰环境,并结合行为观测和化学方法分析性信息素滴度。结果表明:在风洞中,每次释放3.1 mg高剂量Z11-16:Ald或三元混合物[mZ11-16:Ald)∶mZ9-16:Ald)∶mZ13-18:Ald)=10∶1∶1.2]会显著抑制雌蛾的交配率和性信息素滴度,但2个处理间没有显著差异,且雌雄蛾配对数量、喷射间隔时间之间没有显著差异。在喷射或未喷射高剂量Z11-16:Ald环境下,去除触角的雄蛾交配率分别降至(8.3±1.1)%和(10.0±8.9)%。在高剂量性信息素环境下,雌蛾产卵量和卵孵化率没有受到影响;雌蛾日龄显著影响与雄蛾的交配率,1、3、5日龄雌蛾与1日龄雄蛾的交配率分别为(60.0±5.2)%、(31.7±6.0)%、(8.3±3.1)%,且雌蛾随日龄增长产卵量和卵孵化率下降。综上所述,高剂量性信息素环境会抑制二化螟的交配率和性信息素滴度,但不影响雌蛾的产卵量和卵孵化率,而雌蛾日龄对产卵量和卵孵化率有影响;交配率的下降可能与雄蛾嗅觉系统被钝化有关。


关键词: 二化螟,  性信息素,  交配干扰,  交配,  产卵,  日龄 
Fig. 1 Mating rates of female moths in the environment of high dose sex pheromoneA. The released composition is Z11-16:Ald; B. The released composition is m(Z11-16:Ald)∶m(Z9-16:Ald)∶m(Z13-18:Ald)=10∶1∶1.2. CK: Ethanol (the same as below). Different lowercase letters above bars indicate significant differences in mating rates of female moths with the same number of mating pairs at the 0.05 probability level (LSD method).
Fig. 2 Mating number of male moths (A) and mating rates after their antennae were removed (B) in the environment of high dose sex pheromoneSingle asterisk (*) represents significant differences at the 0.05 probability level, and the symbol ns indicates no significant differences at the 0.05 probability level (student’s t-test). The same as Fig. 3 and Fig. 6.
Fig. 3 Effects of high dose sex pheromone treatment on the number of laid eggs (A) and egg hatching rates (B) of female moths
Fig. 4 Effects of high dose sex pheromone treatment on the daily number of eggs laid by female moths with different ages after eclosionThere are no significant differences in the number of eggs laid by female moths of the same age between the treatment group and the control group at the 0.05 probability level (student’s t-test).
Fig. 5 Percentage of female moths releasing sex pheromones in the environment of high dose sex pheromoneSingle asterisk (*) represents significant differences at the 0.05 probability level (chi-square test).
Fig. 6 Titers of sex pheromones released by female moths (A) and the amount of sex pheromones secreted outside the gland (B) in the environment of high dose sex pheromone
Fig. 7 Relationships between ages and mating rates of female mothsDifferent lowercase letters above bars indicate significant differences at the 0.05 probability level (LSD method), and the same as below.
Fig. 8 Effects of the ages of female moths on the number of laid eggs and egg hatching rates
[1]   YU H K, CHEN H, ZHANG Y J, et al. Gene cloning and expression of aminopeptidase N and cadherin from midgut of the rice stem borer, Chilo suppressalis [J]. Insect Science, 2010, 17(5): 393-399. DOI:10.1111/j.1744-7917.2010.01333.x
doi: 10.1111/j.1744-7917.2010.01333.x
[2]   刘杰,姜玉英,黄冲,等.2021年全国粮食作物重大病虫害发生趋势预报[J].中国植保导刊,2021,41(1):37-39, 42.
LIU J, JIANG Y Y, HUANG C, et al. Forecast of the occurrence trend of major diseases and insect pests of food crops in China in 2021[J]. China Plant Protection, 2021, 41(1): 37-39, 42. (in Chinese)
[3]   赵丹丹,周丽琪,张帅,等.二化螟对双酰胺类杀虫剂的抗药性监测和交互抗性研究[J].中国水稻科学,2017,31(3):307-314. DOI:10.16819/j.1001-7216.2017.6124
ZHAO D D, ZHOU L Q, ZHANG S, et al. Resistance monitoring and cross-resistance to the diamides in the rice stem borer, Chilo suppressalis (Lepidoptera: Pyralidae)[J]. Chinese Journal of Rice Science, 2017, 31(3): 307-314. (in Chinese with English abstract)
doi: 10.16819/j.1001-7216.2017.6124
[4]   杜永均,郭荣,韩清瑞.利用昆虫性信息素防治水稻二化螟和稻纵卷叶螟应用技术[J].中国植保导刊,2013,33(11):40-42. DOI:10.3969/j.issn.1672-6820.2013.11.011
DU Y J, GUO R, HAN Q R. Application of insect sex pheromone to control rice Chilo suppressalis and Cnapha-locrocis medinalis [J]. China Plant Protection, 2013, 33(11): 40-42. (in Chinese)
doi: 10.3969/j.issn.1672-6820.2013.11.011
[5]   CHEN Q H, ZHU F, TIAN Z H, et al. Minor components play an important role in interspecific recognition of insects: a basis to pheromone based electronic monitoring tools for rice pests[J]. Insects, 2018, 9(4): 192. DOI:10.3390/insects9040192
doi: 10.3390/insects9040192
[6]   林欣大,劳冲,姚云,等.性信息素对斜纹夜蛾雄蛾嗅觉相关基因abp, pbpor表达的影响[J].昆虫学报,2015,58(3):237-243. DOI:10.16380/j.kcxb.2015.03.002
LIN X D, LAO C, YAO Y, et al. Effects of sex pheromone on the expression of olfactory genes abp, pbp and or in male moths of Spodoptera litura (Lepidoptera: Noctuidae)[J]. Acta Entomologica Sinica, 2015, 58(3): 237-243. (in Chinese with English abstract)
doi: 10.16380/j.kcxb.2015.03.002
[7]   WAN X L, QIAN K, DU Y J. Synthetic pheromones and plant volatiles alter the expression of chemosensory genes in Spodoptera exigua [J]. Scientific Reports, 2015, 5(1): 17320. DOI:10.1038/srep17320
doi: 10.1038/srep17320
[8]   LIANG Y Y, LUO M, FU X G, et al. Mating disruption of Chilo suppressalis from sex pheromone of another pyralid rice pest Cnaphalocrocis medinalis (Lepidoptera: Pyralidae)[J]. Journal of Insect Science, 2020, 20(3): 19. DOI:10.1093/jisesa/ieaa050
doi: 10.1093/jisesa/ieaa050
[9]   VACAS S, NAVARRO I, PRIMO J, et al. Mating disruption to control the striped rice stem borer: pheromone blend, dispensing technology and number of releasing points[J]. Journal of Asia-Pacific Entomology, 2016, 19(2): 253-259. DOI:10.1016/j.aspen.2016.02.001
doi: 10.1016/j.aspen.2016.02.001
[10]   MILLER J R, GUT L J, DE LAME F M, et al. Differentiation of competitive vs. non-competitive mechanisms mediating disruption of moth sexual communication by point sources of sex pheromone (part 2): case studies[J]. Journal of Chemical Ecology, 2006, 32(10): 2115-2143. DOI:10.1007/s10886-006-9136-6
doi: 10.1007/s10886-006-9136-6
[11]   MILLER J R, GUT L J, DE LAME F M, et al. Differentiation of competitive vs. non-competitive mechanisms mediating disruption of moth sexual communication by point sources of sex pheromone (part I): theory[J]. Journal of Chemical Ecology, 2006, 32(10): 2089-2114. DOI:10.1007/s10886-006-9134-8
doi: 10.1007/s10886-006-9134-8
[12]   STELINSKI L L, MILLER J R, LEDEBUHR R, et al. Season-long mating disruption of Grapholita molesta (Lepidoptera: Tortricidae) by one machine application of pheromone in wax drops (SPLAT-OFM)[J]. Journal of Pest Science, 2007, 80: 109-117. DOI:10.1007/s10340-007-0162-0
doi: 10.1007/s10340-007-0162-0
[13]   EL-ADL M A, HOSNY M M, CAMPION D G. Mating disruption for the control of pink bollworm Pectinophora gossypiella (Saunders) in the delta cotton growing area of Egypt[J]. Tropical Pest Management, 1988, 34(2): 210-214. DOI:10.1080/09670878809371243
doi: 10.1080/09670878809371243
[14]   KEATHLEY C P, STELINSKI L L, LAPOINTE S L, et al. Investigating dormant-season application of pheromone in citrus to control overwintering and spring populations of Phyllocnistis citrella (Lepidoptera: Gracillariidae)[J]. Pest Management Science, 2016, 72(7): 1405-1410. DOI:10.1002/ps.4167
doi: 10.1002/ps.4167
[15]   LAPOINTE S L, STELINSKI L L, KEATHLEY C P, et al. Intentional coverage gaps reduce cost of mating disruption for Phyllocnistis citrella (Lepidoptera: Gracillariidae) in citrus[J]. Journal of Economic Entomology, 2014, 107(2): 718-726. DOI:10.1603/EC13388
doi: 10.1603/EC13388
[16]   LUCCHI A, SAMBADO P, ROYO A B J, et al. Disrupting mating of Lobesia botrana using sex pheromone aerosol devices[J]. Environmental Science and Pollution Research, 2018, 25(22): 22196-22204. DOI:10.1007/s11356-018-2341-3
doi: 10.1007/s11356-018-2341-3
[17]   KOVANCI O B, KUMRAL N A, LARSEN T E. High versus ultra-low volume spraying of a microencapsulated pheromone formulation for codling moth control in two apple cultivars[J]. International Journal of Pest Management, 2010, 56(1): 1-7. DOI:10.1080/09670870902957279
doi: 10.1080/09670870902957279
[18]   MCGHEE P S, GUT L J, MILLER J R. Aerosol emitters disrupt codling moth, Cydia pomonella, competitively[J]. Pest Management Science, 2014, 70(12): 1859-1862. DOI:10.1002/ps.3732
doi: 10.1002/ps.3732
[19]   ONUFRIEVA K S, HICKMAN A D, LEONARD D S, et al. Relationship between efficacy of mating disruption and gypsy moth density[J]. International Journal of Pest Management, 2019, 65(1): 44-52. DOI:10.1080/09670874.2018.1455116
doi: 10.1080/09670874.2018.1455116
[20]   HUGHES G P, CARDÉ R T. Do Helicoverpa armigera moths signal their fecundity by emission of an antagonist?[J]. Journal of Chemical Ecology, 2020, 46(1): 21-29. DOI:10.1007/s10886-019-01132-x
doi: 10.1007/s10886-019-01132-x
[21]   KANNO H, HATTORI M, SATA A. Disruption of sex pheromone communication in the rice stem borer moth, Chilo suppressalis WALKER (Lepidoptera: Pyralidae), with sex pheromone components and their analogues[J]. Applied Entomology and Zoology, 1980, 15(4): 465-473. DOI:10.1303/aez.15.465
doi: 10.1303/aez.15.465
[22]   KNIGHT A L, HOWELL J F, MCDONOUGH L M, et al. Mating disruption of codling moth (Lepidoptera, Tortricidae) with polyethylene tube dispensers: determining emission rates and the distribution of fruit injuries[J]. Journal of Agricultural Entomology, 1995, 12(2/3): 85-100.
[23]   KARG G, SUCKLING D M. Polyethylene dispensers generate large-scale temporal fluctuations in pheromone concentration[J]. Environmental Entomology, 1997, 26(4): 896-905. DOI:10.1093/ee/26.4.896
doi: 10.1093/ee/26.4.896
[24]   STELINSKI L L, McGHEE P, HAAS M, et al. Sprayable microencapsulated sex pheromone formulations for mating disruption of four tortricid species: effects of application height, rate, frequency, and sticker adjuvant[J]. Journal of Economic Entomology, 2007, 100(4): 1360-1369. DOI:10.1603/0022-0493(2007)100 [1360:smspff]2.0.co;2
doi: 10.1603/0022-0493(2007)100
[25]   BENELLI G, LUCCHI A, THOMSON D, et al. Sex pheromone aerosol devices for mating disruption: challenges for a brighter future[J]. Insects, 2019, 10(10): 308. DOI:10.3390/insects10100308
doi: 10.3390/insects10100308
[26]   JIAO X G, XUAN W J, SHENG C F. Effects of delayed mating and male mating history on longevity and reproductive performance of the rice stem borer, Chilo suppressalis (Walker) (Lep., Pyralidae)[J]. Journal of Applied Entomology, 2006, 130(2): 108-112. DOI:10.1111/j.1439-0418.2006.01036.x
doi: 10.1111/j.1439-0418.2006.01036.x
[27]   WALKER P W. Effects of delayed mating on the repro-duction of Pectinophora scutigera (Holdaway) (Lepidoptera: Gelechiidae)[J]. Australian Journal of Entomology, 1991, 30(4): 339-340. DOI:10.1111/j.1440-6055.1991.tb00449.x
doi: 10.1111/j.1440-6055.1991.tb00449.x
[28]   FRASER H W, TRIMBLE R M. Effect of delayed mating on reproductive biology of the Oriental fruit moth (Lepidoptera: Tortricidae)[J]. The Canadian Entomologist, 2001, 133(2): 219-227. DOI:10.4039/Ent133219-2
doi: 10.4039/Ent133219-2
[29]   STELINSKI L L, GUT L J. Delayed mating in tortricid leafroller species: simultaneously aging both sexes prior to mating is more detrimental to female reproductive potential than aging either sex alone[J]. Bulletin of Entomological Research, 2009, 99(3): 245-251. DOI:10.1017/S0007485308006263
doi: 10.1017/S0007485308006263
[30]   WANG X P, FANG Y L, ZHENG Z N. Effects of delayed mating on the fecundity, fertility and longevity of females of diamondback moth, Plutella xylostella [J]. Insect Science, 2011, 18(3): 305-310. DOI:10.1111/j.1744-7917.2010.01371.x
doi: 10.1111/j.1744-7917.2010.01371.x
[31]   ZHENG X L, LIU J Y, LU W, et al. Mating delay reduces reproductive performance but not longevity in a monandrous moth[J]. Journal of Insect Science, 2020, 20(2): 3. DOI:10.1093/jisesa/ieaa009
doi: 10.1093/jisesa/ieaa009
[32]   TORRES-VILA L M, RODRÍGUEZ-MOLINA M C, STOCKEL J. Delayed mating reduces reproductive output of female European grapevine moth, Lobesia botrana (Lepidop-tera: Tortricidae)[J]. Bulletin of Entomological Research, 2002, 92(3): 241-249. DOI:10.1079/BER2002155
doi: 10.1079/BER2002155
[33]   HODGDON E A, HALLETT R H, HEAL J D, et al. Synthetic pheromone exposure increases calling and reduces subsequent mating in female Contarinia nasturtii (Diptera: Cecidomyiidae) [J]. Pest Management Science, 2021, 77(1): 548-556. DOI:10.1002/ps.6054
doi: 10.1002/ps.6054
[34]   HOLDCRAFT R, RODRIGUEZ-SAONA C, STELINDKI L L. Pheromone autodetection: evidence and implications[J]. Insects, 2016, 7(2): 17. DOI:10.3390/insects7020017
doi: 10.3390/insects7020017
[35]   BAKTHAVATSALAM N, VINUTHA J, RAMAKRISHNA P, et al. Autodetection in Helicoverpa armigera (Hubner)[J]. Current Science, 2016, 110(12): 2261-2267. DOI:10.18520/CS/V110/I12/2261-2267
doi: 10.18520/CS/V110/I12/2261-2267
[36]   WEISSLING T J, KNIGHT A L. Oviposition and calling behavior of codling moth (Lepidoptera: Tortricidae) in the presence of codlemone[J]. Annals of the Entomological Society of America, 1996, 89(1): 142-147. DOI:10.1093/aesa/89.1.142
doi: 10.1093/aesa/89.1.142
[37]   REHERMANN G, ALTESOR P, MCNEIL J N, et al. Conspecific females promote calling behavior in the noctuid moth, Pseudaletia adultera [J]. Entomologia Experimentalis et Applicata, 2016, 159(3): 362-369. DOI:10.1111/eea.12448
doi: 10.1111/eea.12448
[1] Yudong QUAN,Kongming WU. Research progress of vegetative insecticidal protein Vip3 insect-resistant transgenic crops[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2022, 48(6): 672-682.
[2] Peng KUAI,Yonggen LOU. Research advances in biology, ecology and management of rice planthoppers[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2022, 48(6): 692-700.
[3] Xi FANG,Youping XU,Xinzhong CAI. Research progress of fire blight in fruit trees[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2022, 48(6): 731-743.
[4] Chunhao CHEN,Jianping LI,Yongliang BIAN,Linshuo Lü,Chunlin XUE. Parameter optimization and test of an apple pipeline transportation device[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2022, 48(5): 660-670.
[5] Yan XIE,Zhenji LIU,Jie LI,Quanli ZONG,Jin JIN,Kai SHI. Numerical simulation of the filtration and sewage processes of horizontal self-cleaning mesh filter[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2022, 48(1): 117-124.
[6] Zhiyun PENG,Xu Lü,Riqu WUZA,Chuanhai SHU,Jie SHEN,Kaihong XIANG,Zhiyuan YANG,Jun MA. Effects of straw returning and nitrogen fertilizer management on soil nitrogen supply and yield of direct seeding rice under wheat (rape)-rice rotation[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2022, 48(1): 45-56.
[7] Xun YU,Zhe WANG,Haitao JING,Xiuliang JIN,Chenwei NIE,Yi BAI,Zheng WANG. Maize tassel segmentation based on deep learning method and RGB image[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2021, 47(4): 451-463.
[8] Xuefeng TIAN,Yao YAO,Yi TANG. Effect of microbe and irradiation on quality transformation of raw Pu’er tea during storage[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2021, 47(3): 354-362.
[9] Xiaohui WANG,Kunpeng ZHOU. Research on recognition methods for red tomato image in the natural environment[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2021, 47(3): 395-403.
[10] Gangshuan BAI,Sheni DU,Qingfeng MIAO. Effects of supplementary irrigation on the growth of film-mulched spring wheat in Hetao irrigation area during heading stage[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2021, 47(1): 21-31.
[11] Yawen LIU,Fei YU,Cong CHEN,Siwei YAN,Yangjun Lü,Yuejin ZHU,Junhao KONG,Xiufang YANG,Yuanyuan WU,Puming HE,Youying TU,Bo LI. Effects of different packaging materials on the qualities of Lapsang Souchong black tea during storage[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2021, 47(1): 60-73.
[12] Wenxian ZOU,Yuning ZHOU,Siting GU,Tuhai HUANG,Yuyou ZHI,Long MENG,Jiachun SHI,Jian CHEN,Jianming XU. Effect of flooding in critical stage on cadmium accumulation and translocation of rice in different paddy soils[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2021, 47(1): 74-88.
[13] Xin YUAN,Liang LI,Hua HE,Shenqiang HU,Jiwen WANG. Construction of a CRISPR-Cas9 knockdown lentiviral plasmid of goose (Anas platyrhynchos) stearoyl-coenzyme A desaturase gene[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2020, 46(5): 529-538.
[14] Tengda HUANG,Pin JIANG,Wenwu HU,Feifei XIAO,Fan WU,Zhanming LIU. Design and experiment of path tracking system for field management machine[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2020, 46(4): 509-518.
[15] Tiantian GU,Yong TIAN,Wei ZHOU,Guofa LIU,Li CHEN,Tao ZENG,Xinsheng WU,Qi XU,Guohong CHEN,Lizhi LU. Effects of caged stress on the duodenal tissue structure, antioxidant capacity and gene mRNA expression level of Shaoxing duck[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2020, 46(2): 234-242.