Please wait a minute...
Journal of Zhejiang University (Agriculture and Life Sciences)  2022, Vol. 48 Issue (6): 672-682    DOI: 10.3785/j.issn.1008-9209.2022.06.161
Reviews     
Research progress of vegetative insecticidal protein Vip3 insect-resistant transgenic crops
Yudong QUAN(),Kongming WU()
State Key Laboratory for Biology of Plant Diseases and Insect Pests/Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
Download: HTML   HTML (   PDF(1280KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

The vegetative insecticidal protein Vip3 produced by Bacillus thuringiensis is a tetramer composed of five domains. Its N-terminal is mainly related to the stability of the structure, while the C-terminal is a potential specific receptor binding region. The Vip3 family of vegetative insecticidal proteins contains 14 holotypes and more than 110 proteins. The proposed mode of action of Vip3 shares some similarities with that of the crystal proteins (Cry proteins), in that both undergo activation (proteolytic processing) in the insect midgut, bind to receptors on the surface of the midgut cells, make pores that lead to cell lysis, and eventually death of the insect. In consideration of different active mechanisms to insects as well as their insecticidal spectrum complementarity, the stack strategy of two kinds of genes (vip3 and cry) has been widely used in development of new insect-resistant transgenic crops worldwide; and Vip3Aa transgenic crops such as maize and cotton have been commercially planted in the United States, Brazil and other countries, in order to delay and manage the Cry protein resistance from some target pests such as Spodoptera frugiperda and others. It has been reported that a high resistance to Vip3 toxins by some insects could be rapidly evolved under the toxin selective press in the laboratory, and also field monitoring to several species has confirmed resistance occurrence of Vip3 in natural environments. Therefore, monitoring and management of target pest resistance are much necessary for industrialization of Vip3 insect-resistant transgenic crops.



Key wordsvegetative insecticidal proteins      transgenic vip3 crops      structure and function      mode of action      insect resistance management     
Received: 16 June 2022      Published: 27 December 2022
CLC:  S 476.11  
Corresponding Authors: Kongming WU     E-mail: yudongquan1@126.com;wukongming@caas.cn
Cite this article:

Yudong QUAN,Kongming WU. Research progress of vegetative insecticidal protein Vip3 insect-resistant transgenic crops. Journal of Zhejiang University (Agriculture and Life Sciences), 2022, 48(6): 672-682.

URL:

https://www.zjujournals.com/agr/10.3785/j.issn.1008-9209.2022.06.161     OR     https://www.zjujournals.com/agr/Y2022/V48/I6/672


营养期杀虫蛋白Vip3类转基因抗虫作物的研发进展

苏云金芽孢杆菌(Bacillus thuringiensis)产生的营养期杀虫蛋白Vip3是由5个结构域组成的四聚体,其N-端主要控制结构的稳定,C-端为潜在的特异性受体结合域,共有14个模式样本,超过110种蛋白。与晶体蛋白(crystal proteins, Cry蛋白)一样,Vip3经蛋白酶消化后的杀虫活性物质主要作用于昆虫的中肠组织,可通过与特异性受体的结合引起肠道穿孔或细胞溶解,从而导致昆虫死亡。由于Vip3与Cry蛋白具有不同的杀虫机制和很强的杀虫谱互补性,国内外多采取这2类基因叠加的策略来研发新型转基因抗虫作物。Vip3Aa转基因玉米和棉花已经在美国和巴西等国家商业化种植,成为治理草地贪夜蛾等靶标害虫对Cry蛋白产生抗性的主要手段。实验室的选择压汰选表明,多种靶标害虫也可对Vip3产生较高的抗性,田间监测已证实其抗性的存在。因此,对靶标害虫的抗性监测与治理对Vip3类转基因抗虫作物产业化具有重要意义。


关键词: 营养期杀虫蛋白,  转vip3基因作物,  结构和功能,  杀虫机制,  抗性治理 
Fig. 1 Schematic diagram of insecticidal mechanisms of Vip3Aa① Apoptosis induced by Vip3Aa protoxin in Sf9 cell; ② Cell pore formation mediated by activated Vip3Aa toxin in vivo.

作物

Crop

基因(转化事件)

Gene (transformation event)

修饰类型

Modification type

开发/采用公司

Developer/Adopter

监管批准国家

Regulatory approval country

棉花

Cotton

cry1Ab+vip3Aa[COT102 (IR102)]农杆菌介导转化先正达澳大利亚、哥斯达黎加、美国
cry1Ac+cry1F+vip3Aa[COT102 (IR102)]杂交陶氏巴西、日本、韩国
cry1Ac+cry2Ab2+vip3Aa[COT102 (IR102)]杂交美国孟山都公司澳大利亚、巴西
cry1Ac+cry2Ae+vip3Aa[COT102 (IR102)]杂交拜耳澳大利亚、巴西
cry1Ab+cry2Ae+vip3Aa[COT102 (IR102)]杂交德国巴斯夫公司和拜耳巴西

玉米

Maize

cry1A+cry2Ae+vip3Aa (33121)农杆菌介导转化杜邦(先锋)
vip3Aa (DBN9501)农杆菌介导转化大北农中国

cry1Ab+mcry3A+ecry3.1Ab+cryFa2+

vip3Aa (MIR162)

农杆菌介导转化先正达

阿根廷、巴西、加拿大、日本、

巴拉圭、菲律宾、哥伦比亚、美国

cry2Ab2+cry1A.105+cry1Ab+cry3Bb+

vip3Aa20 (MIR162)

杂交美国孟山都公司阿根廷、巴西、日本
cry1Ab+vip3Aa20 (MIR162)杂交杜邦(先锋)阿根廷、巴西
cry1Fa2+cry1Ab+vip3Aa20 (MIR162)杂交陶氏阿根廷、巴西、加拿大、巴拉圭、日本
Table 1 Commercially available Bt crops expressing Vip3A

蛋白

Protein

修饰方式

Modification

描述

Description

毒力变化

Insecticidal activity change

文献

Reference

Vip3AcAa结构域交换嵌合体由Vip3Ac1 N-端600个氨基酸和Vip3Aa1 C-端189个氨基酸组成获得对玉米螟的毒力;对草地贪夜蛾、美洲棉铃虫和家蚕的毒力增强[44]
Vip3AaAc结构域交换

嵌合体由Vip3Aa1 N-端610个氨基酸

和Vip3Ac1 C-端179个氨基酸组成

对草地贪夜蛾、美洲棉铃虫的毒力减弱;对家蚕的毒力完全丧失[44]
Vip3Ab1-740序列交换嵌合体由Vip3Ab1 N-端612个氨基酸和Vip3Ai1 C-端177个氨基酸组成获得对亚热带黏虫的毒力;同时,保持对草地贪夜蛾、美洲棉铃虫和大豆尺夜蛾的毒力[48]
Vip3Aa14蛋白融合嵌合体由Vip3Aa14和Cry1Ac组成对棉铃虫和小菜蛾同Cry1Ac一样高效;但与Vip3Aa相比,对斜纹夜蛾的毒力显著减弱[45]
Vip3Aa7启动子交换和蛋白融合嵌合体由Cry1C启动子及已经去除N-端39个氨基酸的Vip3Aa7和Cry1Ac的C-端组成获得更高的表达量,但对小菜蛾、棉铃虫和甜菜夜蛾的毒力减弱[47]
Vip3Aa7蛋白融合

嵌合体由Vip3Aa7和Cry9Ca的N-端

组成

对小菜蛾的毒力增强[46]
Vip3Aa16蛋白融合

嵌合体由Vip3Aa16 和Cry1Ac的核心

序列组成

使地中海粉螟1龄幼虫的死亡率提高[49]
Table 2 Genetic engineered Vip3A and their insecticidal activity changes
[1]   KARABÖRKLÜ S, AZIZOGLU U, AZIZOGLU Z B. Recombinant entomopathogenic agents: a review of biotech-nological approaches to pest insect control[J]. World Journal of Microbiology and Biotechnology, 2018, 34(1): 14. DOI:10.1007/s11274-017-2397-0
doi: 10.1007/s11274-017-2397-0
[2]   OLSON S. An analysis of the biopesticide market now and where it is going[J]. Outlooks Pest Management, 2015, 26(5): 203-206. DOI:10.1564/v26_oct_04
doi: 10.1564/v26_oct_04
[3]   JAMES C. Global Status of Commercialization of Biotech/GM Crops in 2017: Biotech Crop Adoption Surges as Eco-nomic Benefits Accumulate in 22 Years: ISAAA Briefs No. 53[M]. Ithaca, N.Y., USA: ISAAA, 2017: 1-4.
[4]   BATES S L, ZHAO J Z, ROUSH R T, et al. Insect resistance management in GM crops: past, present and future[J]. Nature Biotechnology, 2005, 23(1): 57-62. DOI:10.1038/nbt1056
doi: 10.1038/nbt1056
[5]   JURAT-FUENTES J L, HECKEL D G, FERRÉ J. Mecha-nisms of resistance to insecticidal proteins from Bacillus thuringiensis [J]. Annual Review of Entomology, 2020, 66: 121-140. DOI:10.1146/annurev-ento-052620-073348
doi: 10.1146/annurev-ento-052620-073348
[6]   CHAKROUN M, BEL Y, CACCIA S, et al. Susceptibility of Spodoptera frugiperda and S. exigua to Bacillus thuringiensis Vip3Aa insecticidal protein[J]. Journal of Invertebrate Patho-logy, 2012, 110: 334-339. DOI:10.1016/j.jip.2012.03.021
doi: 10.1016/j.jip.2012.03.021
[7]   DONOVAN W P, DONOVAN J C, ENGLEMAN J T. Gene knockout demonstrates that vip3A contributes to the pathogenesis of Bacillus thuringiensis toward Agrotis ipsilon and Spodoptera exigua [J]. Journal of Invertebrate Pathology, 2001, 78(1): 45-51. DOI:10.1006/jipa.2001.5037
doi: 10.1006/jipa.2001.5037
[8]   ESTRUCH J J, WARREN G W, MULLINS M A, et al. Vip3A, a novel Bacillus thuringiensis vegetative insecticidal protein with a wide spectrum of activities against lepidopteran insects[J]. PNAS, 1996, 93: 5389-5394. DOI:10.1073/pnas.93.11.5389
doi: 10.1073/pnas.93.11.5389
[9]   TABASHNIK B E, BRÉVAULT T, CARRIÈRE Y. Insect resistance to Bt crops: lessons from the first billion acres[J]. Nature Biotechnology, 2013, 31(6): 510-521. DOI:10.1038/nbt.2597
doi: 10.1038/nbt.2597
[10]   CARRIÈRE Y, FABRICK J A, TABASHNIK B E. Can pyramids and seed mixtures delay resistance to Bt crops?[J]. Trends in Biotechnology, 2016, 34(4): 291-302. DOI:10.1016/j.tibtech.2015.12.011
doi: 10.1016/j.tibtech.2015.12.011
[11]   CRICKMORE N, BERRY C, PANNEERSELVAM S, et al. A structure-based nomenclature for Bacillus thuringiensis and other bacteria-derived pesticidal proteins[J]. Journal of Invertebrate Pathology, 2021, 186: 107438. DOI:10.1016/j.jip.2020.107438
doi: 10.1016/j.jip.2020.107438
[12]   GUPTA M, KUMAR H, KAUR S. Vegetative insecticidal protein (Vip): a potential contender from Bacillus thurin-giensis for efficient management of various detrimental agricultural pests[J]. Frontiers in Microbiology, 2021, 12: 659736. DOI:10.3389/fmicb.2021.659736
doi: 10.3389/fmicb.2021.659736
[13]   李国平,吴孔明.中国转基因抗虫玉米的商业化策略[J].植物保护学报,2022,49(1):17-32. DOI:10.13802/j.cnki.zwbhxb.2022.2022819
LI G P, WU K M. Commercial strategy of transgenic insect-resistant maize in China[J]. Journal of Plant Protection, 2022, 49(1): 17-32. (in Chinese with English abstract)
doi: 10.13802/j.cnki.zwbhxb.2022.2022819
[14]   CHAKROUN M, BANYULS N, BEL Y, et al. Bacterial vegetative insecticidal proteins (Vip) from entomopathogenic bacteria[J]. Microbiology and Molecular Biology Reviews, 2016, 80(2): 329-350. DOI:10.1128/MMBR.00060-15
doi: 10.1128/MMBR.00060-15
[15]   CHAKRABARTY S, JIN M H, WU C, et al. Bacillus thuringiensis vegetative insecticidal protein family Vip3A and mode of action against pest Lepidoptera[J]. Pest Management Science, 2020, 76(5): 1612-1617. DOI:10.1002/ps.5804
doi: 10.1002/ps.5804
[16]   NÚÑEZ-RAMÍREZ R, HUESA J, BEL Y, et al. Molecular architecture and activation of the insecticidal protein Vip3Aa from Bacillus thuringiensis [J]. Nature Communications, 2020, 11(1): 3974. DOI:10.1038/s41467-020-17758-5
doi: 10.1038/s41467-020-17758-5
[17]   ZHENG M Y, EVDOKIMOV A G, MOSHIRI F, et al. Crystal structure of a Vip3B family insecticidal protein reveals a new fold and a unique tetrameric assembly[J]. Protein Science, 2020, 29(4): 824-829. DOI:10.1002/pro.3803
doi: 10.1002/pro.3803
[18]   BYRNE M J, LADANZA M G, PEREZ M A, et al. Cryo-EM structures of an insecticidal Bt toxin reveal its mechanism of action on the membrane[J]. Nature Communications, 2021, 12(1): 2791. DOI:10.1038/s41467-021-23146-4
doi: 10.1038/s41467-021-23146-4
[19]   CACCIA S, CHAKROUN M, VINOKUROV K, et al. Proteolytic processing of Bacillus thuringiensis Vip3A proteins by two Spodoptera species[J]. Journal of Insect Physiology, 2014, 67: 76-84. DOI:10.1016/j.jinsphys.2014.06.008
doi: 10.1016/j.jinsphys.2014.06.008
[20]   BANYULS N, HERNÁNDEZ-MARTÍNEZ P, QUAN Y D, et al. Artefactual band patterns by SDS-PAGE of the Vip3Af protein in the presence of proteases mask the extremely high stability of this protein[J]. International Journal of Biological Macromolecules, 2018, 120: 59-65. DOI:10.1016/j.ijbiomac.2018.08.067
doi: 10.1016/j.ijbiomac.2018.08.067
[21]   QUAN Y D, FERRÉ J. Structural domains of the Bacillus thuringiensis Vip3Af protein unraveled by tryptic digestion of alanine mutants[J]. Toxins, 2019, 11(6): 368. DOI:10.3390/toxins11060368
doi: 10.3390/toxins11060368
[22]   BEL Y, BANYULS N, CHAKROUN M, et al. Insights into the structure of the Vip3Aa insecticidal protein by protease digestion analysis[J]. Toxins, 2017, 9(4): 131. DOI:10.3390/toxins9040131
doi: 10.3390/toxins9040131
[23]   DERBYSHIRE D J, ELLAR D J, LI J, et al. Crystallization of the Bacillus thuringiensis toxin Cry1Ac and its complex with the receptor ligand N-acetyl-D-galactosamine[J]. Acta Crystallographica Section D: Biological Crystallography, 2001, 57(Pt 12): 1938-1944. DOI:10.1107/S090744490101040X
doi: 10.1107/S090744490101040X
[24]   QUAN Y D, LÁZARO-BERENGUER M, HERNÁNDEZ-MARTÍNE P, et al. Critical domains in the specific binding of radiolabeled Vip3Af insecticidal protein to brush border membrane vesicles from Spodoptera spp. and cultured insect cells[J]. Applied and Environmental Microbiology, 2021, 87(24): e0178721. DOI:10.1128/AEM.01787-21
doi: 10.1128/AEM.01787-21
[25]   JIANG K, ZHANG Y, CHEN Z, et al. Structural and functional insights into the C-terminal fragment of insecticidal Vip3A toxin of Bacillus thuringiensis [J]. Toxins, 2020, 12(7): 438. DOI:10.3390/toxins12070438
doi: 10.3390/toxins12070438
[26]   BANYULS N, HERNÁNDEZ-RODRÍGUEZ C S, VAN RIE J, et al. Critical amino acids for the insecticidal activity of Vip3Af from Bacillus thuringiensis: inference on structural aspects[J]. Scientific Reports, 2018, 8(1): 7539. DOI:10.1038/s41598-018-25346-3
doi: 10.1038/s41598-018-25346-3
[27]   BOONYOS P, TRAKULNALUEAMSAI C, RUNGROD A, et al. Antagonistic effect of truncated fragments of Bacillus thuringiensis Vip3Aa on the larvicidal activity of its full-length protein[J]. Protein and Peptide Letters, 2021, 28(2): 131-139. DOI:10.2174/0929866527666200625205846
doi: 10.2174/0929866527666200625205846
[28]   SOONSANGA S, RUNGROD A, AUDTHO M, et al. Tyrosine-776 of Vip3Aa64 from Bacillus thuringiensis is important for retained larvicidal activity during high-temperature storage[J]. Current Microbiology, 2019, 76(1): 15-21. DOI:10.1007/s00284-018-1578-x
doi: 10.1007/s00284-018-1578-x
[29]   ZACK M D, SOPKO M S, FREY M L, et al. Functional characterization of Vip3Ab1 and Vip3Bc1: two novel insec-ticidal proteins with differential activity against lepidopteran pests[J]. Scientific Reports, 2017, 7(1): 11112. DOI:10.1038/s41598-017-11702-2
doi: 10.1038/s41598-017-11702-2
[30]   LI C Y, XU N, HUANG X P, et al. Bacillus thuringiensis Vip3 mutant proteins: insecticidal activity and trypsin sensi-tivity[J]. Biocontrol Science and Technology, 2007, 17(7): 699-708. DOI:10.1080/09583150701527177
doi: 10.1080/09583150701527177
[31]   GAYEN S, HOSSAIN M A, SEN S K. Identification of the bioactive core component of the insecticidal Vip3A toxin peptide of Bacillus thuringiensis [J]. Journal of Plant Bioche-mistry and Biotechnology, 2012, 21(): 128-135. DOI:10.1007/s13562-012-0148-8
doi: 10.1007/s13562-012-0148-8
[32]   BHALLA R, DALAL M, PANGULURI S K, et al. Isolation, characterization and expression of a novel vegetative insecticidal protein gene of Bacillus thuringiensis [J]. FEMS Microbiology Letters, 2005, 243(2): 467-472. DOI:10.1016/j.femsle.2005.01.011
doi: 10.1016/j.femsle.2005.01.011
[33]   SELVAPANDIYAN A, ARORA N, RAJAGOPAL R, et al. Toxicity analysis of N- and C-terminus deleted vegetative insecticidal protein from Bacillus thuringiensis [J]. Applied and Environmental Microbiology, 2001, 67(12): 5855-5858. DOI:10.1128/AEM.67.12.5855-5858.2001
doi: 10.1128/AEM.67.12.5855-5858.2001
[34]   BANYULS N, QUAN Y D, GONZÁLEZ-MARTÍNEZ R M, et al. Effect of substitutions of key residues on the stability and the insecticidal activity of Vip3Af from Bacillus thuringiensis [J]. Journal of Invertebrate Pathology, 2021, 186: 107439. DOI:10.1016/j.jip.2020.107439
doi: 10.1016/j.jip.2020.107439
[35]   SYED T, ASKARI M, MENG Z G, et al. Current insights on vegetative insecticidal proteins (Vip) as next generation pest killers[J]. Toxins, 2020, 12(8): 522. DOI:10.3390/toxins12080522
doi: 10.3390/toxins12080522
[36]   LEE M K, WALTERS F S, HART H, et al. The mode of action of the Bacillus thuringiensis vegetative insecticidal protein Vip3A differs from that of Cry1Ab δ-endotoxin[J]. Applied and Environmental Microbiology, 2003, 69(8): 4648-4657. DOI:10.1128/AEM.69.8.4648-4657.2003
doi: 10.1128/AEM.69.8.4648-4657.2003
[37]   CHAKROUN M, FERRÉ J. In vivo and in vitro binding of Vip3Aa to Spodoptera frugiperda midgut and characteri-zation of binding sites by 125I-radiolabeling[J]. Applied and Environmental Microbiology, 2014, 80(20): 6258-6265. DOI:10.1128/AEM.01521-14
doi: 10.1128/AEM.01521-14
[38]   JIANG K, MEI S Q, WANG T T, et al. Vip3Aa induces apoptosis in cultured Spodoptera frugiperda (Sf9) cells[J]. Toxicon, 2016, 120: 49-56. DOI:10.1016/j.toxicon.2016.07.019
doi: 10.1016/j.toxicon.2016.07.019
[39]   HERNÁNDEZ-MARTÍNEZ P, GOMIS-CEBOLLA J, FERRÉ J, et al. Changes in gene expression and apoptotic response in Spodoptera exigua larvae exposed to sublethal concen-trations of Vip3 insecticidal proteins[J]. Scientific Reports, 2017, 7(1): 16245. DOI:10.1038/s41598-017-16406-1
doi: 10.1038/s41598-017-16406-1
[40]   JIN M H, SHAN Y X, PENG Y, et al. An integrative analysis of transcriptomics and proteomics reveals novel insights into the response in the midgut of Spodoptera frugiperda larvae to Vip3Aa[J]. Toxins, 2022, 14(1): 55. DOI:10.3390/toxins14010055
doi: 10.3390/toxins14010055
[41]   JIANG K, HOU X Y, HAN L, et al. Fibroblast growth factor receptor, a novel receptor for vegetative insecticidal protein Vip3Aa[J]. Toxins, 2018, 10(12): 546. DOI:10.3390/toxins10120546
doi: 10.3390/toxins10120546
[42]   JIANG K, HOU X Y, TAN T T, et al. Scavenger receptor-C acts as a receptor for Bacillus thuringiensis vegetative insec-ticidal protein Vip3Aa and mediates the internalization of Vip3Aa via endocytosis[J]. PLoS Pathogens, 2018, 14(10): e1007347. DOI:10.1371/journal.ppat.1007347
doi: 10.1371/journal.ppat.1007347
[43]   OSMAN G H, SOLTANE R, SALEH I, et al. Isolation, characterization, cloning and bioinformatics analysis of a novel receptor from black cut worm (Agrotis ipsilon) of Bacillus thuringiensis Vip3Aa toxins[J]. Saudi Journal of Biological Sciences, 2019, 26(5): 1078-1083. DOI:10.1016/j.sjbs.2018.06.002
doi: 10.1016/j.sjbs.2018.06.002
[44]   FANG J, XU X L, WANG P, et al. Characterization of chimeric Bacillus thuringiensis Vip3 toxins[J]. Applied and Environmental Microbiology, 2007, 73(3): 956-996. DOI:10.1128/AEM.02079-06
doi: 10.1128/AEM.02079-06
[45]   SARASWATHY N, NAIN V, SUSHMITA K, et al. A fusion gene encoding two different insecticidal proteins of Bacillus thuringiensis [J]. Indian Journal of Biotechnology, 2008, 7(2): 204-209.
[46]   DONG F, SHI R P, ZHANG S S, et al. Fusing the vegetative insecticidal protein Vip3Aa7 and the N terminus of Cry9Ca improves toxicity against Plutella xylostella larvae[J]. Applied Microbiology and Biotechnology, 2012, 96(4): 921-929. DOI:10.1007/s00253-012-4213-y
doi: 10.1007/s00253-012-4213-y
[47]   SONG R, PENG D H, YU Z N, et al. Carboxy-terminal half of Cry1C can help vegetative insecticidal protein to form inclusion bodies in the mother cell of Bacillus thuringiensis [J]. Applied Microbiology and Biotechnology, 2008, 80(4): 647-654. DOI:10.1007/s002253-008-1613-0
doi: 10.1007/s002253-008-1613-0
[48]   SOPKO M S, NARVA K E, BOWLING A J, et al. Modification of Vip3Ab1 C-terminus confers broadened plant protection from lepidopteran pests[J]. Toxins, 2019, 11(6): 316. DOI:10.3390/toxins11060316
doi: 10.3390/toxins11060316
[49]   SELLAMI S, JEMLI S, ABDELMALEK N, et al. A novel Vip3Aa16-Cry1Ac chimera toxin: enhancement of toxicity against Ephestia kuehniella, structural study and molecular docking[J]. International Journal of Biological Macromole-cules, 2018, 117: 752-761. DOI:10.1016/j.ijbiomac.2018.05.161
doi: 10.1016/j.ijbiomac.2018.05.161
[50]   FERRÉ J, VAN RIE J. Biochemistry and genetics of insect resistance to Bacillus thuringiensis [J]. Annual Review of Entomology, 2002, 47(1): 501-533. DOI:10.1146/annurev.ento.47.091201.145234
doi: 10.1146/annurev.ento.47.091201.145234
[51]   CARRIÈRE Y, CRICKMORE N, TABASHNIK B E. Optimizing pyramided transgenic Bt crops for sustainable pest management[J]. Nature Biotechnology, 2015, 33(2): 161-168. DOI:10.1038/nbt.3099
doi: 10.1038/nbt.3099
[52]   MAHON R J, DOWNES S J, JAMES B. Vip3A resistance alleles exist at high levels in Australian targets before release of cotton expressing this toxin[J]. PLoS ONE, 2012, 7(6): e39192. DOI:10.1371/journal.pone.0039192
doi: 10.1371/journal.pone.0039192
[53]   YANG F, SANTIAGO-GONZÁLEZ J C, LITTLE N, et al. First documentation of major Vip3Aa resistance alleles in field populations of Helicoverpa zea (Boddie) (Lepidoptera: Noctuidae) in Texas, USA[J]. Scientific Reports, 2020, 10(1): 5867. DOI:10.1038/s41598-020-62748-8
doi: 10.1038/s41598-020-62748-8
[54]   BERNARDI O, BERNARDI D, AMADO D, et al. Resistance risk assessment of Spodoptera frugiperda (Lepi-doptera: Noctuidae) and Diatraea saccharalis (Lepidoptera: Crambidae) to Vip3Aa20 insecticidal protein expressed in corn[J]. Journal of Economic Entomology, 2015, 108(6): 2711-2719. DOI:10.1093/jee/tov219
doi: 10.1093/jee/tov219
[55]   YANG F, HUANG F N, QURESHI J A, et al. Susceptibility of Louisiana and Florida populations of Spodoptera frugiperda (Lepidoptera: Noctuidae) to transgenic Agrisure® VipteraTM 3111 corn[J]. Crop Protection, 2013, 50: 37-39. DOI:10.1016/j.cropro.2013.04.002
doi: 10.1016/j.cropro.2013.04.002
[56]   YANG F, HEAD G P, SANSONE C, et al. F2 screen, inheritance and cross resistance of field-derived Vip3A resistance in Spodoptera frugiperda (Lepidoptera: Noctuidae) collected from Louisiana, USA[J]. Pest Management Science, 2018, 74(8): 1769-1778. DOI:10.1002/ps.4805
doi: 10.1002/ps.4805
[57]   NIU Y, OYEDIRAN I, YU W B, et al. Populations of Helicoverpa zea (Boddie) in the Southeastern United States are commonly resistant to Cry1Ab, but still susceptible to Vip3Aa20 expressed in MIR 162 corn[J]. Toxins, 2021, 13(1): 63. DOI:10.3390/toxins13010063
doi: 10.3390/toxins13010063
[58]   YANG F, KERNS D L, LITTLE N S, et al. Early warning of resistance to Bt toxin Vip3Aa in Helicoverpa zea [J]. Toxins, 2021, 13(9): 618. DOI:10.3390/toxins13090618
doi: 10.3390/toxins13090618
[59]   QUAN Y D, YANG J, WANG Y Q, et al. The rapid evolution of resistance to Vip3Aa insecticidal protein in Mythimna separata (Walker) is not related to altered binding to midgut receptors[J]. Toxins, 2021, 13(5): 364. DOI:10.3390/toxins13050364
doi: 10.3390/toxins13050364
[60]   PICKETT B R, GULZAR A, FERRÉ J, et al. Bacillus thuringiensis Vip3Aa toxin resistance in Heliothis virescens (Lepidoptera: Noctuidae)[J]. Applied and Environmental Microbiology, 2017, 83(9): e03506-16. DOI:10.1128/AEM.03506-16
doi: 10.1128/AEM.03506-16
[61]   PINOS D, CHAKROUN M, MILLÁN-LEIVA A, et al. Reduced membrane-bound alkaline phosphatase does not affect binding of Vip3Aa in a Heliothis virescens resistant colony[J]. Toxins, 2020, 12(6): 409. DOI:10.3390/toxins12060409
doi: 10.3390/toxins12060409
[62]   BERNARDI O, BERNARDI D, HORIKOSHI R J, et al. Selection and characterization of resistance to the Vip3Aa20 protein from Bacillus thuringiensis in Spodoptera frugiperda [J]. Pest Management Science, 2016, 72(9): 1794-1802. DOI:10.1002/ps.4223
doi: 10.1002/ps.4223
[63]   CHAKROUN M, BANYULS N, WALSH T, et al. Charac-terization of the resistance to Vip3Aa in Helicoverpa armigera from Australia and the role of midgut processing and receptor binding[J]. Scientific Reports, 2016, 6: 24311. DOI:10.1038/srep24311
doi: 10.1038/srep24311
[64]   TABASHNIK B E, CARRIÈRE Y. Evaluating cross-resistance between Vip and Cry toxins of Bacillus thurin-giensis [J]. Journal of Economic Entomology, 2020, 113(2): 553-561. DOI:10.1093/jee/toz308
doi: 10.1093/jee/toz308
[65]   GOMIS-CEBOLLA J, WANG Y Q, QUAN Y D, et al. Analysis of cross-resistance to Vip3 proteins in eight insect colonies, from four insect species, selected for resistance to Bacillus thuringiensis insecticidal proteins[J]. Journal of Invertebrate Pathology, 2018, 155: 64-70. DOI:10.1016/j.jip.2018.05.004
doi: 10.1016/j.jip.2018.05.004
[66]   CHEN X, HEAD G P, PRICE P, et al. Fitness costs of Vip3A resistance in Spodoptera frugiperda on different hosts[J]. Pest Management Science, 2019, 75(4): 1074-1080. DOI:10.1002/ps.5218
doi: 10.1002/ps.5218
[67]   KAHN T W, CHAKROUN M, WILLIAMS J, et al. Efficacy and resistance management potential of a modified Vip3C protein for control of Spodoptera frugiperda in maize[J]. Scientific Reports, 2018, 8(1): 16024. DOI:10.1038/s41598-018-34214-z
doi: 10.1038/s41598-018-34214-z
[68]   XIAO Y T, WU K M. Recent progress on the interaction between insects and Bacillus thuringiensis crops[J]. Philoso-phical Transactions of the Royal Society B: Biological Sciences, 2019, 374(1767): 20180316. DOI:10.1098/rstb.2018.0316
doi: 10.1098/rstb.2018.0316
[69]   TABASHNIK B E, CARRIÈRE Y. Surge in insect resistance to transgenic crops and prospects for sustainability[J]. Nature Biotechnology, 2017, 35(10): 926-935. DOI:10.1038/nbt.3974
doi: 10.1038/nbt.3974
[70]   TOWLES T B, BUNTIN G D, CATCHOT A L, et al. Quantifying the contribution of seed blend refugia in the field corn to Helicoverpa zea (Lepidoptera: Noctuidae) populations[J]. Journal of Economic Entomology, 2021, 114(4): 1771-1778. DOI:10.1093/jee/toab097
doi: 10.1093/jee/toab097
[1] Ge Yansong, Cao Changyu, Wang Lili, Li Nan, Jiang Xiuqing, Li Jinlong*. Analysis of selenocysteine insertion sequence element, structures and functions and expression profiles of selenoprotein T in chicken[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2014, 40(1): 9-15.