Please wait a minute...
Journal of Zhejiang University (Agriculture and Life Sciences)  2022, Vol. 48 Issue (6): 731-743    DOI: 10.3785/j.issn.1008-9209.2022.07.271
Reviews     
Research progress of fire blight in fruit trees
Xi FANG1,2(),Youping XU3,Xinzhong CAI1,2()
1.Hainan Institute of Zhejiang University, Sanya 572025, Hainan, China
2.Zhejiang Provincial Key Laboratory of Biology of Crop Pathogens and Insects, Institute of Biotechnology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
3.Center of Analysis and Measurement, Zhejiang University, Hangzhou 310058, China
Download: HTML   HTML (   PDF(1751KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Fire blight is an important disease caused by Gram-negative bacterium Erwinia amylovora that severely harms Rosaceae plants, and it is an important factor to restrict the development of pear and apple industries in China. Erwinia amylovora is highly virulent with a wide host range, and thus it is difficult to find a unified target for its eradication. With the emergence of drug-resistant strains, control of the disease becomes more difficult. In this paper, the disease characteristics, epidemiology, management methods and the mechanisms underlying E. amylovora pathogenicity and plant resistance were reviewed, which could provide references to further research and efficient control of fire blight.



Key wordsfire blight      Erwinia amylovora      epidemiology      pathogenicity      disease resistance      management     
Received: 27 July 2022      Published: 27 December 2022
CLC:  S 432  
Corresponding Authors: Xinzhong CAI     E-mail: 1614671153@qq.com;xzcai@zju.edu.cn
Cite this article:

Xi FANG,Youping XU,Xinzhong CAI. Research progress of fire blight in fruit trees. Journal of Zhejiang University (Agriculture and Life Sciences), 2022, 48(6): 731-743.

URL:

https://www.zjujournals.com/agr/10.3785/j.issn.1008-9209.2022.07.271     OR     https://www.zjujournals.com/agr/Y2022/V48/I6/731


果树火疫病研究进展

火疫病由革兰氏阴性菌解淀粉欧文菌(Erwinia amylovora)引起,严重危害蔷薇科植物,是限制我国梨和苹果产业发展的重要因子。E. amylovora毒力强,寄主范围广泛,难以找到统一的根治靶标。随着耐药性菌株的出现,对该病害的控制变得更加困难。本文综述了火疫病的病害特性、发生规律、防控方法以及E. amylovora致病机制和植物抗性机制研究进展,为火疫病的深入研究和有效防治提供参考。


关键词: 火疫病,  解淀粉欧文菌,  流行学,  致病机制,  抗病机制,  防控 
Fig. 1 Symptoms of pear fire blightA. Blackened shepherd’s crooked diseased shoot; B. Bacterial oozes on diseased shoots; C. Water soaking lesion on diseased young fruit.
Fig. 2 Molecular mechanisms underlying plant-E. amylovora interactionsThe figure was drawn by Figdraw (http://www.figdraw.com). Erwinia amylovora effectors, which are indicated in colored circles, enter the plant cell through T3SS. DspA/E and HrpN physically interact with LRR receptor-like kinase DIPM1-4 and transmembrane protein HIPM, respectively, to promote disease development. Eop4/AvrRpt2EA cleaves MdRIN4 and produces ACP3, which activates the R protein Mr5 to trigger ETI. Eop1 might be recognized somehow by FB_Mf12 and FB_E12 to elicit ETI. The immune recognition of Eop2 and Eop3 remains unknown.

药剂

Chemical

用量

Dosage

效率

Efficiency/%

文献

Reference

硫酸铝钾 Aluminum potassium sulfate3 000~4 000倍液56~85[2]
链霉素 Streptomycin3 000~4 000倍液60~97[2]
波尔多液 Bordeaux mixture1∶2∶200倍量34~60[50]
春雷·王铜 Kasugamycin·copper oxychloride700倍液74~82[51]
氢氧化铜 Copper hydroxide1 000倍液75~88[52]
恶喹酸 Oxolinic acid666倍液68~80[47]
调环酸 Prohexadione carboxylic acid (PCA)625倍液60~75[48]
土霉素 Oxytetracycline700 mg/L57~61[49]
Table 1 Chemicals for fire blight management

生防制剂

Biological control agent

效率

Efficiency/%

文献

Reference

荧光假单胞菌A506

Pseudomonas fluorescens A506

40~60[53]

成团泛菌D325

Pantoea agglomerans D325

60~65[56]

成团泛菌P10c

Pantoea agglomerans P10c

60~66[56]

枯草芽孢杆菌QST713

Bacillus subtilis QST713

58~63[56]

枯草芽孢杆菌BD170

Bacillus subtilis BD170

43~71[56]

禾谷假单胞菌49M

Pseudomonas graminis 49M

73~86[54]

草生欧文菌89

Erwinia herbicola 89

65~70[55]

成团泛菌ACBP2

Pantoea agglomerans ACBP2

73~90[56]

解淀粉芽孢杆菌LMR2

Bacillus amyloliquefaciens LMR2

70~90[56]

莫海威芽孢杆菌SF16

Bacillus mojavensis SF16

70~90[56]

调环酸钙

Prohexadione-calcium (PhCa)

71~73[63]

苯丙噻重氮

Acibenzolar-S-methyl (ASM)

62~76[69]

抗菌肽BP100

Antimicrobial peptide BP100

75~90[75]

杀菌肽A-蜂毒素杂合物

Cecropin A-melittin (CAM)

55~76[73]

抗菌肽BP358

Antimicrobial peptide BP358

78~95[76]
Table 2 Biological control agents for fire blight
[1]   VAN DER ZWET T, KEIL H L. Fire Blight: A Bacterial Disease of Rosaceous Plants[M]. Washington, D.C., USA: United States Department of Agriculture, 1979: 510.
[2]   GUSBERTI M, KLEMM U, MEIER M S, et al. Fire blight control: the struggle goes on. A comparison of different fire blight control methods in Switzerland with respect to biosafety, efficacy and durability[J]. International Journal of Environmental Research and Public Health, 2015, 12(9): 11422-11447. DOI:10.3390/ijerph120911422
doi: 10.3390/ijerph120911422
[3]   CALZOLARI A, FINELLI F, MAZZOLI G L. A severe unforeseen outbreak of fire blight in the Emilia-Romagna region[J]. Acta Horticulturae, 1999, 489: 171-176. DOI:10.17660/ActaHortic.1999.489.26
doi: 10.17660/ActaHortic.1999.489.26
[4]   李洪涛,张静文,盛强,等.我国20个梨品种(种质)对国外梨火疫病菌的抗病性评价[J].果树学报,2019,36(5):629-637. DOI:10.13925/j.cnki.gsxb.20180295
LI H T, ZHANG J W, SHENG Q, et al. Resistance evaluation of 20 pear varieties (germplasm) in China to foreign strains of Erwinia amylovora [J]. Journal of Fruit Science, 2019, 36(5): 629-637. (in Chinese with English abstract)
doi: 10.13925/j.cnki.gsxb.20180295
[5]   农业农村部办公厅关于印发《全国农业植物检疫性有害生物分布行政区名录》的通知[EB/OL].(2022-07-01)[2022-07-21].. DOI:10.19103/as.2021.0088.14
Notice of the General Office of the Ministry of Agriculture and Rural Affairs on printing and distributing the “National List of Administrative Regions for the Distribution of Agricultural and Phytosanitary Pests”[EB/OL]. (2022-07-01) [2022-07-21].
doi: 10.19103/as.2021.0088.14
[6]   ZHAO Y Q, TIAN Y L, WANG L M, et al. Fire blight disease, a fast-approaching threat to apple and pear production in China[J]. Journal of Integrative Agriculture, 2019, 18(4): 815-820. DOI:10.1016/S2095-3119(18)62033-7
doi: 10.1016/S2095-3119(18)62033-7
[7]   龙海,杨伟东,陈枝楠,等.亚洲梨火疫病致病相关因子的研究进展[J].植物检疫,2008,22(6):389-392. DOI:10.19662/j.cnki.issn.1005-2755.2008.06.023
LONG H, YANG W D, CHEN Z N, et al. Research progress on pathogenic factors of Asian fire blight[J]. Plant Quarantine, 2008, 22(6): 389-392. (in Chinese)
doi: 10.19662/j.cnki.issn.1005-2755.2008.06.023
[8]   KHARADI R R, SCHACHTERLE J K, YUAN X C, et al. Genetic dissection of the Erwinia amylovora disease cycle[J]. Annual Review of Phytopathology, 2021, 59: 191-212. DOI:10.1146/annurev-phyto-020620-095540
doi: 10.1146/annurev-phyto-020620-095540
[9]   PIQUÉ N, MIÑANA-GALBIS D, MERINO S, et al. Virulence factors of Erwinia amylovora: a review[J]. Interna-tional Journal of Molecular Sciences, 2015, 16(6): 12836-12854. DOI:10.3390/ijms160612836
doi: 10.3390/ijms160612836
[10]   YUAN X C, HULIN M T, SUNDIN G W. Effectors, chaperones, and harpins of the Type Ⅲ secretion system in the fire blight pathogen Erwinia amylovora: a review[J]. Journal of Plant Pathology, 2021, 103(): 25-39. DOI:10.1007/s42161-020-00623-1
doi: 10.1007/s42161-020-00623-1
[11]   BOGDANOVE A J, BAUER D W, BEER S V. Erwinia amylovora secretes DspE, a pathogenicity factor and functional AvrE homolog, through the Hrp (type Ⅲ secretion) pathway[J]. Journal of Bacteriology, 1998, 180(8): 2244-2247. DOI:10.1128/JB.180.8.2244-2247.1998
doi: 10.1128/JB.180.8.2244-2247.1998
[12]   OH C S, BEER S V. Molecular genetics of Erwinia amylovora involved in the development of fire blight[J]. FEMS Microbiology Letters, 2005, 253(2): 185-192. DOI:10.1016/j.femsle.2005.09.051
doi: 10.1016/j.femsle.2005.09.051
[13]   杨金花,徐叶挺,张校立.梨火疫病研究进展[J].分子植物育种,2022,20(3):1003-1013. DOI:10.13271/j.mpb.020.001003
YANG J H, XU Y T, ZHANG X L. Advances of fire blight in pear[J]. Molecular Plant Breeding, 2022, 20(3): 1003-1013. (in Chinese with English abstract)
doi: 10.13271/j.mpb.020.001003
[14]   WÖHNER T W, RICHTER K, SUNDIN G W, et al. Inoculation of Malus genotypes with a set of Erwinia amylovora strains indicates a gene-for-gene relationship between the effector gene eop1 and both Malus floribunda 821 and Malus ‘Evereste’[J]. Plant Pathology, 2018, 67(4): 938-947. DOI:10.1111/ppa.12784
doi: 10.1111/ppa.12784
[15]   BOREJSZA-WYSOCKA E, NORELLI J L, ALDWINCKLE H S, et al. Stable expression and phenotypic impact of attacin E transgene in orchard grown apple trees over a 12 year period[J]. BMC Biotechnology, 2010, 10(1): 41. DOI:10 .1186/1472-6750-10-41
doi: 10
[16]   VOGT I, WÖHNER T, RICHTER K, et al. Gene-for-gene relationship in the host-pathogen system Malus×robusta 5-Erwinia amylovora [J]. New Phytologist, 2013, 197(4): 1262-1275. DOI:10.1111/nph.12094
doi: 10.1111/nph.12094
[17]   CASTIBLANCO L F, SUNDIN G W. Cellulose production, activated by cyclic di-GMP through BcsA and BcsZ, is a virulence factor and an essential determinant of the three-dimensional architectures of biofilms formed by Erwinia amylovora Ea1189[J]. Molecular Plant Pathology, 2018, 19(1): 90-103. DOI:10.1111/mpp.12501
doi: 10.1111/mpp.12501
[18]   KOCZAN J M, LENNEMAN B R, MCGRATH M J, et al. Cell surface attachment structures contribute to biofilm formation and xylem colonization by Erwinia amylovora [J]. Applied Environmental Microbiology, 2011, 77(19): 7031-7039. DOI:10.1128/AEM.05138-11
doi: 10.1128/AEM.05138-11
[19]   RECORDS A R. The typeⅥsecretion system: a multipurpose delivery system with a phage-like machinery[J]. Molecular Plant-Microbe Interactions, 2011, 24(7): 751-757. DOI:10.1094/MPMI-11-10-0262
doi: 10.1094/MPMI-11-10-0262
[20]   TIAN Y L, ZHAO Y Q, SHI L Y, et al. Type Ⅵ secretion systems of Erwinia amylovora contribute to bacterial compe-tition, virulence, and exopolysaccharide production[J]. Phytopa-thology, 2017, 107(6): 654-661. DOI:10.1094/PHYTO-11-16-0393-R
doi: 10.1094/PHYTO-11-16-0393-R
[21]   KLINE K A, FÄLKER S, DAHLBERG S, et al. Bacterial adhesins in host-microbe interactions[J]. Cell Host & Microbe, 2009, 5(6): 580-592. DOI:10.1016/j.chom.2009.05.011
doi: 10.1016/j.chom.2009.05.011
[22]   YU X, FENG B M, HE P, et al. From chaos to harmony: responses and signaling upon microbial pattern recognition[J]. Annual Review of Phytopathology, 2017, 55: 109-137. DOI:10.1146/annurev-phyto-080516-035649
doi: 10.1146/annurev-phyto-080516-035649
[23]   KHAN M A, DUREL C E, DUFFY B, et al. Development of molecular markers linked to the ‘Fiesta’ linkage group 7 major QTL for fire blight resistance and their application for marker-assisted selection[J]. Genome, 2007, 50(6): 568-577. DOI:10.1139/g07-033
doi: 10.1139/g07-033
[24]   LEROUX P M F, KHAN M A, BROGGINI G A L, et al. Mapping of quantitative trait loci for fire blight resistance in the apple cultivars ‘Florina’ and ‘Nova Easygro’[J]. Genome, 2010, 53(9): 710-722. DOI:10.1139/g10-047
doi: 10.1139/g10-047
[25]   PEIL A, GARCIA-LIBREROS T, RICHTER K, et al. Strong evidence for a fire blight resistance gene of Malus robusta located on linkage group 3[J]. Plant Breeding, 2007, 126(5): 470-475. DOI:10.1111/j.1439-0523.2007.01408.x
doi: 10.1111/j.1439-0523.2007.01408.x
[26]   DUREL C E, DENANCÉ C, BRISSET M N. Two distinct major QTL for resistance to fire blight co-localize on linkage group 12 in apple genotypes ‘Evereste’ and Malus floribunda clone 821[J]. Genome, 2009, 52(2): 139-147. DOI:10.1139/g08-111
doi: 10.1139/g08-111
[27]   EMERIEWEN O, MALNOY M, RICHTER K, et al. Evidence of a major QTL for fire blight resistance in the apple wild species Malus fusca [J]. Acta Horticulturae, 2014, 1056: 289-293. DOI:10.17660/ActaHortic.2014.1056.49
doi: 10.17660/ActaHortic.2014.1056.49
[28]   PROKCHORCHIK M, CHOI S, CHUNG E H, et al. A host target of a bacterial cysteine protease virulence effector plays a key role in convergent evolution of plant innate immune system receptors[J]. New Phytologist, 2020, 225(3): 1327-1342. DOI:10.1111/nph.16218
doi: 10.1111/nph.16218
[29]   EMERIEWEN O F, WÖHNER T W, FLACHOWSKY H, et al. Malus hosts-Erwinia amylovora interactions: strain pathogenicity and resistance mechanisms[J]. Frontiers in Plant Science, 2019, 10: 551. DOI:10.3389/fpls.2019.00551
doi: 10.3389/fpls.2019.00551
[30]   EMERIEWEN O F, RICHTER K, FLACHOWSKY H, et al. Genetic analysis and fine mapping of the fire blight resistance locus of Malus×arnoldiana on linkage group 12 reveal first candidate genes[J]. Frontiers in Plant Science, 2021, 12: 667133. DOI:10.3389/fpls.2021.667133
doi: 10.3389/fpls.2021.667133
[31]   EMERIEWEN O F, FLACHOWSKY H, PEIL A. Characterization of genomic DNA sequence of the candidate gene for FB_Mfu10 associated with fire blight resistance in Malus species[J]. BMC Research Notes, 2021, 14(1): 291. DOI:10.1186/s13104-021-05709-2
doi: 10.1186/s13104-021-05709-2
[32]   CHAVONET E, GAUCHER M, WARNEYS R, et al. Search for host defense markers uncovers an apple agglutination factor corresponding with fire blight resistance[J]. Plant Physiology, 2022, 188(2): 1350-1368. DOI:10.1093/plphys/kiab542
doi: 10.1093/plphys/kiab542
[33]   GAUCHER M, DE BERNONVILLE T D, GUYOT S, et al. Same ammo, different weapons: enzymatic extracts from two apple genotypes with contrasted susceptibilities to fire blight (Erwinia amylovora) differentially convert phloridzin and phloretin in vitro [J]. Plant Physiology and Biochemistry, 2013, 72: 178-189. DOI:10.1016/j.plaphy.2013.03.012
doi: 10.1016/j.plaphy.2013.03.012
[34]   BRISSET M N, CESBRON S, THOMSON S V, et al. Acibenzolar-S-methyl induces the accumulation of defense-related enzymes in apple and protects from fire blight[J]. European Journal of Plant Pathology, 2000, 106(6): 529-536. DOI:10.1023/A:1008728119087
doi: 10.1023/A:1008728119087
[35]   HAMDOUN S, GAO M, GILL M, et al. Signalling require-ments for Erwinia amylovora-induced disease resistance, callose deposition and cell growth in the non-host Arabidopsis thaliana [J]. Molecular Plant Pathology, 2018, 19(5): 1090-1103. DOI:10.1111/mpp.12588
doi: 10.1111/mpp.12588
[36]   FARJAD M, CLÉMENT G, LAUNAY A, et al. Plant nitrate supply regulates Erwinia amylovora virulence gene expression in Arabidopsis [J]. Molecular Plant Pathology, 2021, 22(11): 1332-1346. DOI:10.1111/mpp.13114
doi: 10.1111/mpp.13114
[37]   吴瑞瑞,叶云锋,陈松余,等.梨品种‘玉露香’抗火疫病蛋白质组学分析[J].植物保护,2022,48(6):90-97. DOI:10.16688/j.zwbh.2022351
WU R R, YE Y F, CHEN S Y, et al. Proteomics analysis on the resistance of pear cultivar ‘Yuluxiang’ to fire blight disease[J]. Plant Protection, 2022, 48(6): 90-97. (in Chinese with English abstract)
doi: 10.16688/j.zwbh.2022351
[38]   李晓妹,韩丽丽,何亚南,等.20个苹果品种(类型)对梨火疫病菌的抗病性评价[J].植物检疫,2022,36(4):6-12. DOI:10.19662/j.cnki.issn1005-2755.2022.00.010
LI X M, HAN L L, HE Y N, et al. Evaluation on the resistance of 20 apple varieties to Erwinia amylovora [J].Plant Quarantine, 2022, 36(4): 6-12. (in Chinese with English abstract)
doi: 10.19662/j.cnki.issn1005-2755.2022.00.010
[39]   HARSHMAN J M, EVANS K M, ALLEN H, et al. Fire blight resistance in wild accessions of Malus sieversii [J]. Plant Disease, 2017, 101(10): 1738-1745. DOI:10.1094/PDIS-01-17-0077-RE
doi: 10.1094/PDIS-01-17-0077-RE
[40]   MALNOY M, VIOLA R, JUNG M H, et al. DNA-free genetically edited grapevine and apple protoplast using CRISPR/Cas9 ribonucleoproteins[J]. Frontiers in Plant Science, 2016, 7: 1904. DOI:10.3389/fpls.2016.01904
doi: 10.3389/fpls.2016.01904
[41]   MALONY M, JIN Q, BOREJSZA-WYSOCKA E E, et al. Overexpression of the apple MpNPR1 gene confers increased disease resistance in Malus×domestica [J]. Molecular Plant-Microbe Interactions, 2007, 20(12): 1568-1580. DOI:10.1094/MPMI-20-12-1568
doi: 10.1094/MPMI-20-12-1568
[42]   PIAZZA S, CAMPA M, POMPILI V, et al. The Arabidopsis pattern recognition receptor EFR enhances fire blight resistance in apple[J]. Horticulture Research, 2021, 8(1): 204. DOI:10.1038/s41438-021-00639-3
doi: 10.1038/s41438-021-00639-3
[43]   SCHLATHÖLTER I, JÄNSCH M, FLACHOWSKY H, et al. Generation of advanced fire blight-resistant apple (Malus×domestica) selections of the fifth generation within 7 years of applying the early flowering approach[J]. Planta, 2018, 247(6): 1475-1488. DOI:10.1007/s00425-018-2876-z
doi: 10.1007/s00425-018-2876-z
[44]   王俊,高建诚,巴音克西克,等.利用电加热自动消毒修枝剪阻断梨火疫病田间传播[J].植物检疫,2022,36(2):25-28. DOI:10.19662/j.cnki.issn1005-2755.2021.00.023
WANG J, GAO J C, BAYINKEXIKE, et al. Blocking field spread of fire blight by electric heating automatic disinfection pruning scissors[J]. Plant Quarantine, 2022, 36(2): 25-28. (in Chinese with English abstract)
doi: 10.19662/j.cnki.issn1005-2755.2021.00.023
[45]   JONES A L, SCHNABEL E L. The development of streptomycin-resistant strains of Erwinia amylovora [M]//VANNESTE J.Fire Blight: The Disease and Its Causative Agent, Erwinia amylovora.Wallingford, UK: CABI Publishing, 2000: 235-251.
[46]   STOCKWELL V O, DUFFY B. Use of antibiotics in plant agriculture[J]. Revue Scientifique et Technique-Office Interna-tional Des Epizooties, 2012, 31(1): 199-210. DOI:10.20506/rst.31.1.2104
doi: 10.20506/rst.31.1.2104
[47]   SHTIENBERG D, MANULIS-SASSON S, ZILBERSTAINE M, et al. The incessant battle against fire blight in pears: 30 years of challenges and successes in managing the disease in Israel[J]. Plant Disease, 2015, 99(8): 1048-1058. DOI:10.1094/PDIS-01-15-0101-FE
doi: 10.1094/PDIS-01-15-0101-FE
[48]   DÜKER A, KUBIAK R. Stem injection of prohexadione carboxylic acid to protect blossoms of apple trees from fire blight infection (Erwinia amylovora)[J]. Journal of Plant Diseases and Protection, 2011, 118(5): 156-160.
[49]   AĆIMOVIĆ S G, ZENG Q, McGHEE G C, et al. Control of fire blight (Erwinia amylovora) on apple trees with trunk-injected plant resistance inducers and antibiotics and assessment of induction of pathogenesis-related protein genes[J]. Frontiers in Plant Science, 2015, 6: 16. DOI:10.3389/fpls.2015.00016
doi: 10.3389/fpls.2015.00016
[50]   ADASKAVEG J, FÖRSTER H, HOLTZ B A, et al. Evaluation of bactericides for control of fire blight of pear and apple caused by Erwinia amylovora [J]. Acta Horticulturae, 2006, 704: 277-282. DOI:10.17660/ActaHortic.2006.704.39
doi: 10.17660/ActaHortic.2006.704.39
[51]   王杰花,牛玉玲,覃建国,等.4种杀菌剂对梨火疫病的田间防治效果与评价[J].农药,2022,61(7):523-525. DOI:10.16820/j.nyzz.2022.1001
WANG J H, NIU Y L, QIN J G, et al. Field control effect and evaluation of four fungicides on fire blight of pear[J]. Agrochemicals, 2022, 61(7): 523-525. (in Chinese with English abstract)
doi: 10.16820/j.nyzz.2022.1001
[52]   BRETH D I, REDDY M V B, NORELLI J, et al. Successful fire blight control is in the details[J]. New York Fruit Quarterly, 2000(8): 6-12.
[53]   徐琳赟,古丽孜热·曼合木提,韩剑,等.香梨内生拮抗细菌的筛选及对梨火疫病的生防潜力[J].西北植物学报,2021,41(1):132-141. DOI:10.7606/j.issn.1000-4025.2021.01.0132
XU L Y, GULIZIRE M H M T, HAN J, et al. Screening of endophytic antagonistic bacteria from ‘Kuerlexiangli’ pear and their biocontrol potential against fire blight disease[J]. Acta Botanica Boreali-Occidentalia Sinica, 2021, 41(1): 132-141. (in Chinese with English abstract)
doi: 10.7606/j.issn.1000-4025.2021.01.0132
[54]   MIKICIŃSKI A, SOBICZEWSKI P, PUŁAWSKA J, et al. Control of fire blight (Erwinia amylovora) by a novel strain 49M of Pseudomonas graminis from the phyllosphere of apple (Malus spp.)[J]. European Journal of Plant Pathology, 2016, 145(2): 265-276. DOI:10.1007/s10658-015-0837-y
doi: 10.1007/s10658-015-0837-y
[55]   ZELLER W, WOLF B. Studies on biological control of fire blight[J]. Acta Horticulturae, 1996, 411(1): 341-345. DOI:10 .17660/ActaHortic.1996.411.69
doi: 10
[56]   BAHADOU S A, OUIJJA A, KARFACH A, et al. New potential bacterial antagonists for the biocontrol of fire blight disease (Erwinia amylovora) in Morocco[J]. Microbial Patho-genesis, 2018, 117: 7-15. DOI:10.1016/j.micpath.2018.02.011
doi: 10.1016/j.micpath.2018.02.011
[57]   KAMBER T, LANSDELL T A, STOCKWELL V O, et al. Characterization of the biosynthetic operon for the antibac-terial peptide herbicolin in Pantoea vagans biocontrol strain C9-1 and incidence in Pantoea species[J]. Applied and Environmental Microbiology, 2012, 78(12): 4412-4419. DOI:10.1128/AEM.07351-11
doi: 10.1128/AEM.07351-11
[58]   CHEN X H, SCHOLZ R, BORRISS M, et al. Difficidin and bacilysin produced by plant-associated Bacillus amyloli-quefaciens are efficient in controlling fire blight disease[J]. Journal of Biotechnology, 2009, 140(1/2): 38-44. DOI:10.1016/j.jbiotec.2008.10.015
doi: 10.1016/j.jbiotec.2008.10.015
[59]   王俊,高建诚,巴音克西克,等.利用蜜蜂传播生防菌防治梨火疫病[J].植物检疫,2022,36(1):9-12. DOI:10.19662/j.cnki.issn1005-2755.2021.00.015
WANG J, GAO J C, BAYINKEXIKE, et al. Dispersal of biocontrol bacterium by honey bee for control of fire blight[J]. Plant Quarantine, 2022, 36(1): 9-12. (in Chinese with English abstract)
doi: 10.19662/j.cnki.issn1005-2755.2021.00.015
[60]   SCHNABEL E L, JONES A L. Isolation and characteri-zation of five Erwinia amylovora bacterio phages and assessment of phage resistance in strains of Erwinia amylovora [J]. Applied and Environmental Microbiology, 2001, 67(1): 59-64. DOI:10.1128/AEM.67.1.59-64.2001
doi: 10.1128/AEM.67.1.59-64.2001
[61]   BUTTIMER C, BORN Y, LUCID A, et al. Erwinia amylovora phage vB_EamM_Y3 represents another lineage of hairy Myoviridae [J]. Research in Microbiology, 2018, 169(9): 505-514. DOI:10.1016/j.resmic.2018.04.006
doi: 10.1016/j.resmic.2018.04.006
[62]   GAYDER S, PARCEY M, NESBITT D, et al. Population dynamics between Erwinia amylovora, Pantoea agglomerans and bacteriophages: exploiting synergy and competition to improve phage cocktail efficacy[J]. Microorganisms, 2020, 8(9): 1449. DOI:10.3390/microorganisms8091449
doi: 10.3390/microorganisms8091449
[63]   WALLIS A E, COX K D. Management of fire blight using pre-bloom application of prohexadione-calcium[J]. Plant Disease, 2020, 104(4): 1048-1054. DOI:10.1094/PDIS-09-19-1948-RE
doi: 10.1094/PDIS-09-19-1948-RE
[64]   RADEMACHER W. Growth retardants: effects on gibberellin biosynthesis and other metabolic pathways[J]. Annual Review of Plant Physiology and Plant Molecular Biology, 2000, 51(1): 501-531. DOI:10.1146/annurev.arplant.51.1.501
doi: 10.1146/annurev.arplant.51.1.501
[65]   MCGRATH M J, KOCZAN J M, KENNELLY M M, et al. Evidence that prohexadione-calcium induces structural resistance to fire blight infection[J]. Phytopathology, 2009, 99(5): 591-596. DOI:10.1094/PHYTO-99-5-0591
doi: 10.1094/PHYTO-99-5-0591
[66]   JONES A L. Challenges of controlling fire blight[J]. Compact Fruit Tree, 2001, 34(3): 86-91.
[67]   MATSUO Y, NOVIANTI F, TAKEHARA M, et al. Acibenzolar-S-methyl restricts infection of Nicotiana benthamiana by plantago asiatica mosaic virus at two distinct stages[J]. Molecular Plant-Microbe Interactions,2019, 32(11): 1475-1486. DOI:10.1094/MPMI-03-19-0087-R
doi: 10.1094/MPMI-03-19-0087-R
[68]   MAXSON-STEIN K, HE S Y, HAMMERSCHMIDT R, et al. Effect of treating apple trees with acibenzolar-S-methyl on fire blight and expression of pathogenesis-related protein genes[J]. Plant Disease, 2002, 86(7): 785-790. DOI:10.1094/PDIS.2002.86.7.785
doi: 10.1094/PDIS.2002.86.7.785
[69]   JOHNSON K B, TEMPLE T N. Induction of systemic acquired resistance aids restoration of tree health in field-grown pear and apple diseased with fire blight[J]. Plant Disease, 2017, 101(7): 1263-1268. DOI:10.1094/PDIS-12-16-1772-RE
doi: 10.1094/PDIS-12-16-1772-RE
[70]   AĆIMOVIĆ S G, MEREDITH C L, SANTANDER R D, et al. Proof of concept for shoot blight and fire blight canker management with postinfection spray applications of prohexadione-calcium and acibenzolar-S-methyl in apple[J]. Plant Disease, 2021, 105(12): 4095-4105. DOI:10.1094/PDIS-08-20-1744-RE
doi: 10.1094/PDIS-08-20-1744-RE
[71]   PATEL R R, SUNDIN G W, YANG C H, et al. Exploration of using antisense peptide nucleic acid (PNA)-cell pene-trating peptide (CPP) as a novel bactericide against fire blight pathogen Erwinia amylovora [J]. Frontiers in Micro-biology, 2017, 8: 687. DOI:10.3389/fmicb.2017.00687
doi: 10.3389/fmicb.2017.00687
[72]   CABREFIGA J, MONTESINOS E. Lysozyme enhances the bactericidal effect of BP100 peptide against Erwinia amylovora, the causal agent of fire blight of rosaceous plants[J]. BMC Microbiology, 2017, 17(1): 39. DOI:10.1186/s12866-017-0957-y
doi: 10.1186/s12866-017-0957-y
[73]   SAUGAR J M, RODRÍGUEZ-HERNÁNDEZ M J, DE LA TORRE B G, et al. Activity of cecropin A-melittin hybrid peptides against colistin-resistant clinical strains of Acine-tobacter baumannii: molecular basis for the differential mechanisms of action[J]. Antimicrobial Agents and Chemo-therapy, 2006, 50(4): 1251-1256. DOI:10.1128/AAC.50.4.1251-1256.2006
doi: 10.1128/AAC.50.4.1251-1256.2006
[74]   MENDES R J, REGALADO L, LUZ J P, et al. In vitro evaluation of five antimicrobial peptides against the plant pathogen Erwinia amylovora [J]. Biomolecules, 2021, 11(4): 554. DOI:10.3390/biom11040554
doi: 10.3390/biom11040554
[75]   BADOSA E, MOISET G, MONTESINOS L, et al. Derivatives of the antimicrobial peptide BP100 for expression in plant systems[J]. PLoS ONE, 2013, 8(12): e85515. DOI:10.1371/journal.pone.0085515
doi: 10.1371/journal.pone.0085515
[1] Yudong QUAN,Kongming WU. Research progress of vegetative insecticidal protein Vip3 insect-resistant transgenic crops[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2022, 48(6): 672-682.
[2] Peng KUAI,Yonggen LOU. Research advances in biology, ecology and management of rice planthoppers[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2022, 48(6): 692-700.
[3] Mengjiao LIU,Hang YI,Xinzhong CAI. Cyclic nucleotide-gated ion channel gene CNGC3 positively regulates immunity against Sclerotinia sclerotiorum in Arabidopsis[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2022, 48(5): 594-604.
[4] Lihua XU,Fei SU,Junxing LI,Bin YU,Shiyi YE,Fuwen YANG,Lirong DENG,Huimin MAO,Xiufang YUAN. Molecular epidemiological analysis of porcine circovirus type 2 in Zhejiang Province from 2016 to 2020[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2022, 48(5): 644-652.
[5] Zhiyun PENG,Xu Lü,Riqu WUZA,Chuanhai SHU,Jie SHEN,Kaihong XIANG,Zhiyuan YANG,Jun MA. Effects of straw returning and nitrogen fertilizer management on soil nitrogen supply and yield of direct seeding rice under wheat (rape)-rice rotation[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2022, 48(1): 45-56.
[6] Deqian WANG,Minjie HUANG,Haikun GUO,Mengge FANG,Junzhu LI,Jie DONG. Investigation on the infection of Chinese sacbrood virus and Melissococcus pluton in Chinese honeybee (Apis cerana cerana) of Chun’an County of Zhejiang Province[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2021, 47(3): 389-394.
[7] Tengda HUANG,Pin JIANG,Wenwu HU,Feifei XIAO,Fan WU,Zhanming LIU. Design and experiment of path tracking system for field management machine[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2020, 46(4): 509-518.
[8] Fengli WANG,Jiying QIU,Meixue DAI,Leilei CHEN,Shuangzhi ZHAO,Xue XIN,Qingxin ZHOU. Isolation, identification and pathogenicity study of pathogens during postharvest storage of sweet cherries[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2020, 46(1): 126-134.
[9] Ruowei GUAN,Jianxin LIU. Causes of susceptibility to diseases and early monitoring of common diseases in perinatal dairy cows[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2019, 45(5): 519-525.
[10] Rui GUO,Jie DONG,Haikun GUO,Junzhu LI,Deqian WANG. Establishment and application of a polymerase chain reaction method for detection of Melissococcus pluton in honeybee (Apis cerana cerana) in Chunan County of Zhejiang Province[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2019, 45(3): 385-390.
[11] XU Changchun, ZHENG Ge, LIN Youhua. Analysis of program for research and development on comprehensive prevention and control techniques for agricultural non-point source and heavy metal polluted croplands[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2017, 43(6): 657-662.
[12] ZHANG Yuanyuan, ZHANG Gui, ZHANG Jian, ZHANG Guang, ZHOU Hongyou, ZHAO Jun(. Cross pathogenicity of Verticillium spp. isolated from different hosts[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2017, 43(4): 483-492.
[13] CHANG Jian, YU Jie, WANG Fei’er, ZHENG Siyuan. Cost- effectiveness analysis of best management practices for non- point source pollution in watersheds: A review.[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2017, 43(2): 137-145.
[14] Yang Shimin, Yang Zhiyuan, Sun Yongjian, Ma Jun. Effects of nitrogen management on grain yield and nitrogen use efficiency of two hybrid rice varieties with different panicle masses.[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2015, 41(6): 685-694.
[15] Jiang Mingjin, Ma Jun, Sun Yongjian, Yan Fengjun, Xu Hui, Yang Zhiyuan, Sun Jiawei . Effects of seeding rates and nitrogen fertilizer managements on photosynthetic productivity and nitrogen utilization in direct-seeded rice[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2015, 41(5): 516-526.