Please wait a minute...
Journal of Zhejiang University (Agriculture and Life Sciences)  2022, Vol. 48 Issue (1): 117-124    DOI: 10.3785/j.issn.1008-9209.2021.02.251
Agricultural engineering     
Numerical simulation of the filtration and sewage processes of horizontal self-cleaning mesh filter
Yan XIE1(),Zhenji LIU1(),Jie LI1,Quanli ZONG1,2,Jin JIN1,Kai SHI1
1.College of Water & Architectural Engineering, Shihezi University, Shihezi 832000, Xinjiang, China
2.College of Resources and Environment, Qingdao Agricultural University, Qingdao 266109, Shandong, China
Download: HTML   HTML (   PDF(6885KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

In order to study the change rule of the internal flow field of the self-cleaning mesh filter with different inlet flow rates during the filtration and sewage processes, we used Fluent software to carry out the numerical simulation of the clear-water flow field for the filtration and sewage processes of the self-cleaning mesh filter, and obtained the pressure field and velocity field at the different inlet flow rates. Comparing the numerical simulation results with the physical test results, the relative error was within 10%, which confirmed the reliability of the numerical simulation. Meanwhile, the results of the numerical simulation showed that the higher the water flow rate was, the more violent the mixing of water was in the tank and the sewage system, which could reduce the sedimentation and help to improve the filtration and sewage effects. Moreover, with the increase of the inlet flow rate, the pressure difference between the inlet and outlet of the tank and the sewage system increased, and the head loss also increased, and the requirement for the stability of the filter structure was higher. The above research results can provide a reference for the optimization of the horizontal self-cleaning mesh filter structure.



Key wordsself-cleaning mesh filter      filtration process      sewage process      numerical simulation      head loss     
Received: 25 February 2021      Published: 04 March 2022
CLC:  S 277.9  
Corresponding Authors: Zhenji LIU     E-mail: 1152370834@qq.com;shz_lzj@163.com
Cite this article:

Yan XIE,Zhenji LIU,Jie LI,Quanli ZONG,Jin JIN,Kai SHI. Numerical simulation of the filtration and sewage processes of horizontal self-cleaning mesh filter. Journal of Zhejiang University (Agriculture and Life Sciences), 2022, 48(1): 117-124.

URL:

https://www.zjujournals.com/agr/10.3785/j.issn.1008-9209.2021.02.251     OR     https://www.zjujournals.com/agr/Y2022/V48/I1/117


卧式自清洗网式过滤器过滤及排污过程的数值模拟

为了研究卧式自清洗网式过滤器在不同进水流速下过滤和排污过程中内部流场的分布规律,利用Fluent软件对卧式自清洗网式过滤器的过滤和排污过程进行清水流场的数值模拟,得到不同进水流速下的压强场和速度场,并将模拟结果与试验结果对比,二者相对误差在10%以内,证实了数值模拟的可靠性。数值模拟结果表明,进水流速越大,罐体和排污系统内的水流掺混越剧烈,可减少泥沙淤积,有助于提高过滤和排污效果,但随着进水流速的增大,罐体和排污系统的进出口压强差随之增大,其水头损失也增大,对过滤器结构稳定性要求也越高。上述研究结果可为卧式自清洗网式过滤器结构优化提供参考依据。


关键词: 自清洗网式过滤器,  过滤过程,  排污过程,  数值模拟,  水头损失 
Fig. 1 Structural diagram of self-cleaning mesh filter and flow chart of filtration and sewage processesA. Filtration system; B. Sewage system. 1: Inlet; 2: Outlet; 3: Pressure gauge; 4: Fine filter; 5: Tank; 6: Coarse filter; 7: Sand suction component; 8: Rotary nozzle outlet; 9: Rotary nozzle; 10: Electromagnetic valve; 11: Sewage outlet; 12: Sand discharge pipe.

系统

System

组件

Component

内径(宽度)

Inradium (width)/mm

长度

Length/mm

排污系统

Sewage

system

排沙管 Sand discharge pipe60960
吸沙组件 Sand suction component50400
旋喷管 Rotary nozzle60280
矩形吸沙口 Rectangular sand suction port(20)400
旋喷口 Rotary spout30

吸沙组件与排沙管轴线距离 Distance between the sand suction

component and the axis of sand discharge pipe

200

各吸沙组件中心点垂直距离 Vertical distance of the center

point of each sand suction component

200
排污管 Sewage pipe100300

过滤系统

Filtration

system

进水管 Inlet pipe160300
出水管 Outlet pipe160300
罐体 Tank3001 170
分流口 Shunt12020
Table 1 Summary table of design parameters of sewage system and filtration system
Fig. 2 Grid division of three-dimensional models of tank (A) and sewage system (B)

工况

Working

condition

实际进水流速

Actual inlet

flow rate/(m/s)

实际进水流量

Actual inlet

flow/(m3/h)

出水口压强

Outlet pressure/

Pa

10.169128 510
20.695509 580
30.833609 700
41.1128011 010
51.3669911 110
61.51711011 310
72.08315112 840
Table 2 Boundary conditions of the inlet and outlet

工况

Working

condition

实际进水流量

Actual inlet

flow/(m3/h)

进水口压强

Inlet pressure/Pa

出水口压强

Outlet pressure/Pa

水头损失 Head loss

物理试验

Physical test/m

数值模拟

Numerical simulation/m

相对误差

Relative error/%

11214 2708 5100.6370.5769.60
25016 8909 5800.7950.7318.05
36017 6709 7000.8770.7979.12
48020 1701 1011.0090.9169.22
59923 02011 1101.3161.1919.50
611024 89011 3101.4991.3589.41
715133 29012 8402.2642.0459.67
Table 3 Result comparisons of head loss between numerical simulation and physical test
Fig. 3 Pressure cloud diagrams of different planes of the self-cleaning mesh filter at different flow ratesA. Inlet flow rate is 0.695 m/s; B. Inlet flow rate is 1.366 m/s; C. Inlet flow rate is 2.083 m/s.
Fig. 4 Velocity cloud diagrams of different planes of the self-cleaning mesh filter at different inlet flow ratesA. Inlet flow rate is 0.695 m/s; B. Inlet flow rate is 1.366 m/s; C. Inlet flow rate is 2.083 m/s.
Fig. 5 Pressure cloud diagrams of the sewage system at different flow rates
Fig. 6 Velocity cloud diagrams of the sewage system at different flow rates
[1]   王慧 .我国水资源利用现状与节水灌溉发展对策思路总结[J].智能城市,2019,5(13):155-156.
WANG H . Summary of current situation of water resources utilization and development countermeasures of water-saving irrigation in China[J]. Intelligent City, 2019, 5(13): 155-156. (in Chinese)
[2]   BOUNOUA S , TOMAS S , LABILLE J , et al . Understanding physical clogging in drip irrigation: in situ, in-lab and numerical approaches[J]. Irrigation Science, 2016, 34(4): 327-342. DOI:10.1007/s00271-016-0506-8
doi: 10.1007/s00271-016-0506-8
[3]   BOVé J , ARBAT G , DURAN-ROS M , et al . Pressure drop across sand and recycled glass media used in micro irrigation filters[J]. Biosystems Engineering, 2015, 137: 55-63. DOI:10.1016/j.biosystemseng.2015.07.009
doi: 10.1016/j.biosystemseng.2015.07.009
[4]   DE-DEUS F P , MESQUITA M , TESTEZLAF R , et al . Methodology for hydraulic characterisation of the sand filter backwashing processes used in micro irrigation[J]. MethodsX, 2020, 7: 100962. DOI:10.1016/j.mex.2020.100962
doi: 10.1016/j.mex.2020.100962
[5]   宗全利,刘飞,刘焕芳,等 .滴灌用自清洗网式过滤器排污压差计算方法[J].农业机械学报,2012,43(11):107-112. DOI:10.6041/j.issn.1000-1298.2012.11.020
ZONG Q L , LIU F , LIU H F , et al . Calculating and experiment on drainage pressure difference of self-cleaning screen filter for drip irrigation[J]. Transactions of the Chinese Society for Agricultural Machinery, 2012, 43(11): 107-112. (in Chinese with English abstract)
doi: 10.6041/j.issn.1000-1298.2012.11.020
[6]   杨洪飞,宗全利,刘贞姬,等 .大田滴灌用网式过滤器滤网堵塞成因分析[J].节水灌溉,2017(2):94-98. DOI:10.3969/j.issn.1007-4929.2017.02.022
YANG H F , ZONG Q L , LIU Z J , et al . The analysis of clogging factor for filter screen in field drip irrigation system[J]. Water Saving Irrigation, 2017(2): 94-98. (in Chinese with English abstract)
doi: 10.3969/j.issn.1007-4929.2017.02.022
[7]   骆秀萍 .进水流速对自清洗网式过滤器排污系统内部流场影响数值分析[J].水利水电技术,2019,50(5):150-154. DOI:10.13928/j.cnki.wrahe.2019.05.018
LUO X P . Numerical analysis of influence from inlet velocity on internal flow field of sewerage system with self-cleaning mesh filter[J]. Water Resources and Hydropower Engineering, 2019, 50(5): 150-154. (in Chinese with English abstract)
doi: 10.13928/j.cnki.wrahe.2019.05.018
[8]   陶洪飞,滕晓静,赵经华,等 .不同流量下全自动网式过滤器内部流场的数值模拟[J].水电能源科学,2016,34(12):180-185.
TAO H F , TENG X J , ZHAO J H , et al . Numerical simulation of internal flow field in automatic screen filter under different flow[J]. Water Resources and Power, 2016, 34(12): 180-185. (in Chinese with English abstract)
[9]   王新坤,高世凯,夏立平,等 .微灌用网式过滤器数值模拟与结构优化[J].排灌机械工程学报,2013,31(8):719-723. DOI:10.3969/j.issn.1674-8530.2013.08.013
WANG X K , GAO S K , XIA L P , et al . Numerical simulation and structural optimization of screen filter in micro-irrigation[J]. Journal of Drainage and Irrigation Machinery Engineering, 2013, 31(8): 719-723. (in Chinese with English abstract)
doi: 10.3969/j.issn.1674-8530.2013.08.013
[10]   喻黎明,徐洲,杨具瑞,等 .基于CFD-DEM耦合的网式过滤器水沙运动数值模拟[J].农业机械学报,2018,49(3):303-308. DOI:10.6041/j.issn.1000-1298.2018.03.036
YU L M , XU Z , YANG J R , et al . Numerical simulation of water and sediment movement in screen filter based on coupled CFD-DEM[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(3): 303-308. (in Chinese with English abstract)
doi: 10.6041/j.issn.1000-1298.2018.03.036
[11]   陶洪飞,朱玲玲,马英杰,等 .滤网孔径对网式过滤器内部流场的影响[J].灌溉排水学报,2017,36(12):68-74. DOI:10.13522/j.cnki.ggps.2017.12.012
TAO H F , ZHU L L , MA Y J , et al . The effect of screen aperture on internal flow field in automatic screen filter[J]. Journal of Irrigation and Drainage, 2017, 36(12): 68-74. (in Chinese with English abstract)
doi: 10.13522/j.cnki.ggps.2017.12.012
[12]   李浩,韩启彪,黄修桥,等 .基于多孔介质模型下微灌网式过滤器CFD湍流模型选择及流场分析[J].灌溉排水学报,2016,35(4):14-19. DOI:10.13522/j.cnki.ggps.2016.04.003
LI H , HAN Q B , HUANG X Q , et al . Turbulence model selection and flow field analysis of the micro irrigation screen filter based on porous medium using CFD[J]. Journal of Irrigation and Drainage, 2016, 35(4): 14-19. (in Chinese with English abstract)
doi: 10.13522/j.cnki.ggps.2016.04.003
[13]   刘贞姬,石凯,李曼,等 .立式与卧式自清洗网式过滤器水头损失试验研究[J].灌溉排水学报,2019,38(12):44-50. DOI:10.13522/j.cnki.ggps.2019005
LIU Z J , SHI K , LI M , et al . Experimental study on head loss of vertical and horizontal self-cleaning mesh filter[J]. Journal of Irrigation and Drainage, 2019, 38(12): 44-50. (in Chinese with English abstract)
doi: 10.13522/j.cnki.ggps.2019005
[14]   宗全利,郑铁刚,刘焕芳,等 .滴灌自清洗网式过滤器全流场数值模拟与分析[J].农业工程学报,2013,29(16):57-65. DOI:10.3969/j.issn.1002-6819.2013.16.008
ZONG Q L , ZHENG T G , LIU H F , et al . Numerical simulation and analysis on whole flow field for drip self-cleaning screen filter[J]. Transactions of the CSAE, 2013, 29(16): 57-65. (in Chinese with English abstract)
doi: 10.3969/j.issn.1002-6819.2013.16.008
[15]   侯宗宗,张可可,王宾宾,等 .不同滤网网孔模型的数值研究[J].船舶,2018,29(6):43-48. DOI:10.19423/j.cnki.31-1561/u.2018.06.043
HOU Z Z , ZHANG K K , WANG B B , et al . Numerical investigation of different filter mesh pore models[J]. Ship & Boat, 2018, 29(6): 43-48. (in Chinese with English abstract)
doi: 10.19423/j.cnki.31-1561/u.2018.06.043
[16]   李曼,刘贞姬,石凯 .滴灌用网式过滤器排污效果试验研究[J].灌溉排水学报,2019,38(10):55-62. DOI:10.13522/j.cnki.ggps.20190265
LI M , LIU Z J , SHI K . Experimental study on sewage discharge effect of drip irrigation net filter[J]. Journal of Irrigation and Drainage, 2019, 38(10): 55-62. (in Chinese with English abstract)
doi: 10.13522/j.cnki.ggps.20190265
[17]   石凯,刘贞姬,李曼 .新型翻板网式过滤器水头损失试验研究[J].排灌机械工程学报,2020,38(4):427-432. DOI:10.3969/j.issn.1674-8530.19.0111
SHI K , LIU Z J , LI M . Experimental study on head loss of a new type of rotatable plate screen filter[J]. Journal of Drainage and Irrigation Machinery Engineering, 2020, 38(4): 427-432. (in Chinese with English abstract)
doi: 10.3969/j.issn.1674-8530.19.0111
[18]   石凯,刘贞姬,孟定华,等 .新型翻板网式过滤器排污性能试验研究[J].机械工程学报,2019,55(24):253-259. DOI:10.3901/JME.2019.24.253
SHI K , LIU Z J , MENG D H , et al . Experimental study on blowdown performance of new type of rotatable plate screen filter[J]. Journal of Mechanical Engineering, 2019, 55(24): 253-259. (in Chinese with English abstract)
doi: 10.3901/JME.2019.24.253
[1] WANG Yongwei, HE Zhuoliang, CHEN Jun, WANG Jun, ZHANG Lingyue, TANG Yanhai. Optimization on structure and parameters of a collision-pneumatic hybrid rice pollination machine[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2018, 44(1): 98-106.