Please wait a minute...
Journal of Zhejiang University (Agriculture and Life Sciences)  2021, Vol. 47 Issue (3): 354-362    DOI: 10.3785/j.issn.1008-9209.2020.08.121
Food sciences     
Effect of microbe and irradiation on quality transformation of raw Pu’er tea during storage
Xuefeng TIAN(),Yao YAO,Yi TANG()
College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
Download: HTML   HTML (   PDF(959KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

This study focused on the effects of irradiation, artificial microbe treatment, temperature and humidity control on the aging and transformation of raw Pu’er tea, and explored the relationship between the factors such as microorganisms, irradiation and the quality of raw Pu’er tea. The results showed that the water content of tea samples during storage was between 7.0% and 9.0%, and the microbial changes of tea samples were not regular. Aqueous extract, free amino acid, tea polyphenol, catechin components showed a consistent change trend among different treatments. The contents of amino acids and tea polyphenols in the irradiated 9 kGy tea samples stored under the room temperature and 30 ℃ decreased more after 200 d, with the decline range of 40.37%, 38.82% and 37.65%, 36.73%, respectively, and the sensory quality was significantly lower than the aseptic treatments. The treatment A2B2C1 namely irradiated 5 kGy sterile tea samples stored at 30 ℃ and 70% humidity had better sensory quality. The quality of tea samples treated with microbe after irradiation was improved with the extension of storage time and was superior to that treated without irradiation.But the sterile treatments under the same irradiation condition still had better overall flavor performance.The above results indicate that the microbial involvement has no direct effect on the quality of raw Pu’er tea under the storage conditions of this study.However, the irradiation treatment with its radiochemical oxidation has an obvious effect on the aging and transformation of raw Pu’er tea.



Key wordsraw Pu’er tea      microbe      irradiation      storage      transformation     
Received: 12 August 2020      Published: 25 June 2021
CLC:  TS 272  
Corresponding Authors: Yi TANG     E-mail: 21616102@zju.edu.cn;ytang@zju.edu.cn
Cite this article:

Xuefeng TIAN,Yao YAO,Yi TANG. Effect of microbe and irradiation on quality transformation of raw Pu’er tea during storage. Journal of Zhejiang University (Agriculture and Life Sciences), 2021, 47(3): 354-362.

URL:

http://www.zjujournals.com/agr/10.3785/j.issn.1008-9209.2020.08.121     OR     http://www.zjujournals.com/agr/Y2021/V47/I3/354


微生物和辐照对普洱生茶贮藏过程中品质转化的影响

研究辐照、人工染菌处理以及控温控湿等技术手段对普洱生茶品质陈化和转化的影响,探究微生物、辐照等因素与普洱生茶品质之间的关系。结果表明:贮藏过程中茶样含水量在7.0%~9.0%之间,不同处理茶样的微生物变化没有规律性;不同处理间水浸出物、游离氨基酸、茶多酚、儿茶素等成分变化趋势表现出一致性。9 kGy辐照染菌处理茶样存放在室温和30 ℃条件下200 d后,游离氨基酸和茶多酚含量减少较多,降幅分别为40.37%、38.82%和37.65%、36.73%,其感官品质明显低于同等辐照剂量的无菌处理。5 kGy辐照无菌处理后存放在30 ℃、70%相对湿度条件(A2B2C1处理)下的茶样感官品质更好。辐照后再染菌处理茶样品质虽随着贮藏时间的延长而有所改善,且优于未经辐照的染菌处理,但其整体风味不如同等辐照条件下的无菌处理。综上所述,在本试验贮藏条件下微生物的参与对普洱生茶品质没有直接促进作用,而辐照处理以其辐射化学氧化方式对普洱生茶的陈化转化具有较明显的效果。


关键词: 普洱生茶,  微生物,  辐照,  贮藏,  转化 

培养基

Medium

目标培养物

Target culture

培养温度

Culture temperature/℃

培养时间

Culture time/h

牛肉膏蛋白胨 Beef extract peptone细菌 Bacteria3724
马铃薯葡萄糖琼脂 Potato dextrose agar霉菌 Mucedine2872
麦氏琼脂 MacConkey agar酵母 Saccharomycetes2848
Table 1 Usage and culture conditions of mediums

茶样处理

Tea sample processing

菌种

Microbial species

0 d30 d75 d120 d165 d200 d
A1B1霉菌 Mucedine1.62.02.43.22.81.6
细菌 Bacteria523296686056
A1B2霉菌 Mucedine1.61.21.62.03.63.6
细菌 Bacteria523664768068
A2B1C1霉菌 Mucedine
细菌 Bacteria
A2B1C2霉菌 Mucedine2.03.22.41.22.02.4
细菌 Bacteria283644284432
A2B2C1霉菌 Mucedine
细菌 Bacteria
A2B2C2霉菌 Mucedine2.02.82.82.82.43.2
细菌 Bacteria282452324028
A3B1C1霉菌 Mucedine
细菌 Bacteria
A3B1C2霉菌 Mucedine2.03.22.82.82.82.4
细菌 Bacteria284836402832
A3B2C1霉菌 Mucedine
细菌 Bacteria
A3B2C2霉菌 Mucedine2.02.81.62.82.83.6
细菌 Bacteria284440483636
Table 2 Changes in the number of microorganisms during storage
Fig. 1 Changes in water content of tea samples in each treatment during storagePlease see the footnote of Table 2 for the details of each treatment symbol.
Fig. 2 Changes in aqueous extract content of tea samples in each treatment during storagePlease see the footnote of Table 2 for the details of each treatment symbol.
Fig. 3 Changes in free amino acid content of tea samples in each treatment during storagePlease see the footnote of Table 2 for the details of each treatment symbol.
Fig. 4 Changes in tea polyphenol content of tea samples in each treatment during storagePlease see the footnote of Table 2 for the details of each treatment symbol.

儿茶素

Catechin

茶样处理

Tea sample processing

0 d30 d75 d120 d165 d200 d

酯型儿茶素

Ester

catechins

A1B1124.98±3.55a130.48±0.57a124.59±3.61a131.84±4.27a122.43±0.06a114.27±4.57b
A1B2124.98±3.55a127.66±1.99a117.37±1.99b130.16±1.00a122.54±2.98a121.60±1.26a
A2B1C1130.27±2.94a126.72±3.24a129.80±0.19a113.26±4.20b120.25±3.10a112.01±2.76b
A2B1C2130.27±2.94a125.68±2.84a121.98±0.26b124.73±2.19a119.10±6.18a120.37±5.30a
A2B2C1130.27±2.94a122.33±1.23b113.47±3.68b132.99±2.55a120.96±0.50a101.58±9.28b
A2B2C2130.27±2.94a128.19±2.61a122.87±2.11a122.54±0.44b124.96±6.31a116.67±4.14a
A3B1C1127.52±5.73a126.06±2.05a125.83±0.29a130.67±6.18a119.91±1.69a119.03±1.24a
A3B1C2127.52±5.73a123.14±0.78a122.76±5.07a123.37±3.03b123.07±1.84a86.06±0.36b
A3B2C1127.52±5.73a126.10±2.72a117.52±5.79a121.05±3.87a115.41±10.09a117.45±6.32a
A3B2C2127.52±5.73a129.33±5.22a120.49±3.52a121.49±3.92a112.68±0.20a83.14±0.05b

儿茶素总量

Total

catechins

A1B1177.26±4.29a185.74±1.70a180.04±4.11a185.17±4.36a174.37±0.35a170.93±9.03b
A1B2177.26±4.29a181.70±2.25b171.32±0.97b185.07±3.36a171.29±3.65a179.24±0.79a
A2B1C1182.65±3.67a180.89±3.86a186.91±0.36a165.11±8.07b170.01±6.78a166.99±4.72b
A2B1C2182.65±3.67a176.44±2.75b177.07±0.26b182.06±3.26a170.51±6.73a178.64±8.52a
A2B2C1182.65±3.67a174.86±1.32b168.54±2.92b186.93±3.26a167.68±0.36a148.92±12.91b
A2B2C2182.65±3.67a181.81±2.74a179.00±2.37a172.64±0.93b180.56±9.11a175.37±4.48a
A3B1C1176.70±7.76a179.08±2.91a183.79±0.75a186.64±7.91a169.63±2.56a176.99±1.65a
A3B1C2176.70±7.76a175.06±1.66b178.33±7.26a174.94±4.24b173.78±1.86a127.29±1.47b
A3B2C1176.70±7.76a178.96±2.78b172.32±7.66a172.79±4.85a162.57±13.28a172.02±6.75a
A3B2C2176.70±7.76a184.46±6.68a175.91±5.11a175.09±6.89a163.15±1.25a128.99±1.92b
Table 3 Changes in catechin content of raw Pu’er tea
Fig. 5 Variation range of main inclusion components of tea samples in each treatment stored for 200 dPlease see the footnote of Table 2 for the details of each treatment symbol.

时间

Time/d

茶样处理

Tea sample processing

香气 Fragrance滋味 Flavor
评语 Remark得分 Score评语 Remark得分 Score
0A1纯正89.0浓醇,略涩88.0
200A1B1尚浓厚94.0浓醇,尚厚91.5
A1B2尚浓厚94.5浓醇,尚厚92.5
Table 4 Sensory quality evaluation of unirradiated raw Pu’er tea stored for 200 d

时间

Time/d

茶样处理

Tea sample processing

香气 Fragrance滋味 Flavor
评语 Remark得分 Score评语 Remark得分 Score
0A2尚浓厚95.0浓醇,尚厚91.0
200A2B1C1浓厚,较馥郁96.0浓醇,甘爽93.0
A2B1C2浓厚,略甜96.0浓醇,甘爽91.0
A2B2C1浓厚,馥郁96.5浓醇,甘爽92.5
A2B2C2浓厚95.0浓醇,甘爽91.5
Table 5 Sensory quality evaluation of irradiated 5 kGy raw Pu’er tea stored for 200 d

时间

Time/d

茶样处理

Tea sample processing

香气 Fragrance滋味 Flavor
评语 Remark得分 Score评语 Remark得分 Score
0A3尚浓厚94.0浓醇90.0
200A3B1C1浓厚,较馥郁96.0浓醇,甘爽92.5
A3B1C2浓厚,尚醇94.5浓醇,甘爽92.0
A3B2C1浓厚95.5浓醇,甘爽93.0
A3B2C2浓厚,馥郁95.5浓醇,甘爽93.5
Table 6 Sensory quality evaluation of irradiated 9 kGy raw Pu’er tea stored for 200 d
[1]   周树红.成品普洱茶陈化机理及提质技术研究.杭州:浙江大学,2001.
ZHOU S H. Studies on the mechanism of stale process and the technique for improving the quality of Pu’er tea. Hangzhou: Zhejiang University, 2001. (in Chinese with English abstract)
[2]   全国原产地域产品标准化工作组.地理标志产品 普洱茶:GB/T 22111—2008.北京:中国标准出版社,2008.
Standardization Working Group4on Local Geographical Indication Product of Standardization Administration of China. Product of Geographical Indication—Pu’er Tea: GB/T 22111—2008. Beijing: China Standard Press, 2008. (in Chinese)
[3]   宁井铭,许姗姗,侯智炜,等.贮存环境对普洱生茶主要化学成分变化的影响.食品科学,2019,40(8):218-224. DOI:10.7506/spkx1002-6630-20180429-379
NING J M, XU S S, HOU Z W, et al. Effects of storage environment on the main chemical components of raw Pu-erh tea. Food Science, 2019,40(8):218-224. (in Chinese with English abstract)
doi: 10.7506/spkx1002-6630-20180429-379
[4]   ZHU Y C, LUO Y H, WANG P P, et al. Simultaneous determination of free amino acids in Pu-erh tea and their changes during fermentation. Food Chemistry, 2016,194:643-649. DOI:10.1016/j.foodchem.2015.08.054.
doi: 10.1016/j.foodchem.2015.08.054
[5]   刘雅琼.不同陈化期普洱茶降脂减肥功能比较研究.广州:华南农业大学,2017.
LIU Y Q. Compare study on weight reduce and fat lower function of different years aged Pu-erh tea. Guangzhou: South China Agricultural University, 2017. (in Chinese with English abstract)
[6]   东方,何普明,林智.普洱茶的抗氧化活性研究进展.食品科学,2007,28(5):363-365.
DONG F, HE P M, LIN Z. Review on antioxidant activity of Pu’er tea. Food Science, 2007,28(5):363-365. (in Chinese with English abstract)
[7]   谌滢.黑茶陈化过程中品质转化研究.长沙:湖南农业大学,2018.
CHEN Y. The research on quality variation of aging dark tea. Changsha: Hunan Agricultural University, 2018. (in Chinese with English abstract)
[8]   张灵枝,程楚镇,李烨.普洱茶渥堆过程主要酶系活性变化研究.食品科学,2010,31(11):1-4.
ZHANG L Z, CHENG C Z, LI Y. Change of major enzymes during pile-fermentation process of Pu’er tea. Food Science, 2010,31(11):1-4. (in Chinese with English abstract)
[9]   路伟尧.普洱茶发酵微生物的溯源分析.北京:北京化工大学,2013:33-38.
LU W Y. Analysis of microbial tracking in Pu’er tea fermentation. Beijing: Beijing University of Chemical Technology, 2013:33-38. (in Chinese with English abstract)
[10]   董坤,熊辛宇,蓝增全.普洱茶发酵过程中微生物类群分析.现代农业科技,2009(1):164-165. DOI:10.3969/j.issn.1007-5739.2009.01.108
DONG K, XIONG X Y, LAN Z Q. Analysis of microbial community during the fermentation of Pu’er tea. Modern Agricultural Science and Technology, 2009(1):164-165. (in Chinese)
doi: 10.3969/j.issn.1007-5739.2009.01.108
[11]   付秀娟,宋文军,徐咏全,等.不同种类微生物对普洱茶发酵过程的影响.茶叶科学,2012,32(4):325-330. DOI:10.3969/j.issn.1000-369X.2012.04.007
FU X J, SONG W J, XU Y Q, et al. Effects of different microorganisms on the fermentative process of Pu’er tea. Journal of Tea Science, 2012,32(4):325-330. (in Chinese with English abstract)
doi: 10.3969/j.issn.1000-369X.2012.04.007
[12]   冯玲然.普洱茶中功能性微生物的筛选及风味物质的初步研究.江苏,无锡:江南大学,2014.
FENG L R. Screening of functional microbes from Pu’er tea and their effects on the flavor and taste of Pu’er tea. Wuxi, Jiangsu: Jiangnan University, 2014. (in Chinese with English abstract)
[13]   赵腾飞,郭学武,张长霞,等.酵母菌纯种发酵普洱茶初探.食品科技,2012,37(2):57-60. DOI:10.13684/j.cnki.spkj.2012.02.048
ZHAO T F, GUO X W, ZHANG C X, et al. Influence of advantage Saccharomycetes to Pu’er tea fermentation. Food Science and Technology, 2012,37(2):57-60. (in Chinese with English abstract)
doi: 10.13684/j.cnki.spkj.2012.02.048
[14]   孙丹.普洱茶不同发酵微生物的发酵功能及氧化酶研究.广州:华南农业大学,2017.
SUN D. Study on fermented functions and oxidases of different microorganisms for Pu’er tea. Guangzhou: South China Agricultural University, 2017. (in Chinese with English abstract)
[15]   林长欣.普洱茶中的风味成分及微生物在贮藏过程中的变化.广州:暨南大学,2010.
LIN C X. Flavor compounds and microorganisms in Pu’er tea at different storage periods. Guangzhou: Jinan University, 2010. (in Chinese with English abstract)
[16]   韩海华,梁名志,周斌星,等.普洱茶发酵过程中潮水用量对茶品质的影响.湖南农业科学,2011(9):112-114, 119. DOI:10.16498/j.cnki.hnnykx.2011.09.007
HAN H H, LIANG M Z, ZHOU B X, et al. Influence of water content on quality of Pu-er tea during fermentation process. Hunan Agricultural Sciences, 2011(9):112-114, 119.(in Chinese with English abstract)
doi: 10.16498/j.cnki.hnnykx.2011.09.007
[17]   张霞,黄端杰.储藏条件对普洱茶品质的影响及其茶汤饮用安全性分析.江苏农业科学,2018,46(12):160-163. DOI:10.15889/j.issn.1002-1302.2018.12.040
ZHANG X, HUANG D J. Effect of storage conditions on the quality of Pu’er tea and analysis of its tea soup drinking safety. Jiangsu Agricultural Sciences, 2018,46(12):160-163. (in Chinese)
doi: 10.15889/j.issn.1002-1302.2018.12.040
[18]   WU S C, YEN G C, WANG B S. Antimutagenic and antimicrobial activities of Pu-erh tea. LWT-Food Science and Technology, 2007,40(3):506-512. DOI:10.1016/j.lwt.2005.11.008
doi: 10.1016/j.lwt.2005.11.008
[19]   FUJITA H, YAMAGAMI T. Efficacy and safety of Chinese black tea (Pu-erh) extract in healthy and hypercholester-olemic subjects. Annals of Nutrition & Metabolism, 2008,53(1):33-42. DOI:10.1159/000153006
doi: 10.1159/000153006
[20]   CHEN F, YUAN Y X, LIU J, et al. Survey of acrylamide levels in Chinese foods. Food Additives and Contaminants: Part B Surveillance, 2008,1(2):85-92. DOI:10.1080/02652030802512461
doi: 10.1080/02652030802512461
[21]   谌滢,欧行畅,张杨波,等.不同储藏年份普洱生茶感官品质的分析.食品科技,2018,43(4):48-52. DOI:10.13684/j.cnki.spkj.2018.04.011
CHEN Y, OU X C, ZHANG Y B, et al. Organoleptic quality analysis of raw Pu-er teas in different storage years. Food Science and Technology, 2018,43(4):48-52. (in Chinese with English abstract)
doi: 10.13684/j.cnki.spkj.2018.04.011
[1] Yuying LIU,Yan ZHANG,Zheyuan WANG,Tingqiang LI. Effects of combined application of nitrification inhibitors and biochars on nitrogen transformation and nitrogen use efficiency in paddy soil[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2021, 47(2): 223-232.
[2] Yawen LIU,Fei YU,Cong CHEN,Siwei YAN,Yangjun Lü,Yuejin ZHU,Junhao KONG,Xiufang YANG,Yuanyuan WU,Puming HE,Youying TU,Bo LI. Effects of different packaging materials on the qualities of Lapsang Souchong black tea during storage[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2021, 47(1): 60-73.
[3] Yin ZHU,Jian ZHU,Zimeng LI,Heng WANG,Juju YOU,Qin LIU. Morphological characteristics of chromium and transformation of hexavalent chromium in Mytilus coruscus[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2020, 46(3): 369-375.
[4] Tianjiao ZHOU,Xiaohui DING,Junhui WANG. Strategies for modulation and optimization of the photorespiration pathway in plants[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2020, 46(3): 271-279.
[5] Zhenzhen PENG,Qihui YE,Xiaoyan XU,Daqi FU. Effect of 1-methylcyclopropene treatment on storage quality of red Fuji apple[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2020, 46(1): 83-92.
[6] Hanqing ZHANG,Haiyan GAO,Ruiling LIU,Yanchao HAN,Xiangjun FANG,Hangjun CHEN. Effects of packaging of polyethylene bags with different thicknesses on storage quality and lignification of water bamboo[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2020, 46(1): 55-63.
[7] Ling LU,Yida FANG,Li LI,Yanqun XU,Zisheng LUO. Effect of water/oil/water double-preservation emulsion on storage quality of broccoli[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2020, 46(1): 74-82.
[8] NI Jiadan, PAN Shizhe, DAN Fan, JIANG Yihong. Effects of tea polyphenols-chitosan complex solution on changes of quality indicators under storage in Miichthys miiuy[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2018, 44(5): 594-600.
[9] YANG Hui, KE Leqin, SHU Ruonan, CHEN Yuwei, ZHU Tingyu, WANG Jun, FAN Jintao, WANG Liangliang. Effects of different storage time on polysaccharide content and antioxidant activity of edible fungi[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2018, 44(3): 356-364.
[10] TONG Xin,HU Boyang,CHEN Xingcai,ZHANG Xuelian,ZHAO Yongzhi,GU Chenggang,LI Yanxia. Environmental exposure of steroid estrogens and their migration and transformation behavior[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2017, 43(6): 734-746.
[11] WANG Jiawei, WANG Zhao, YANG Junwei, ZHAO Hailiang, ZOU Zhirong. Preliminary study on the cooling effect of geothermal exchange at the superficial layer on greenhouse in South Jiangsu in summer[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2017, 43(4): 519-526.
[12] WANG Jingjing, XU Chao, YANG Tilong, LIU Xunyue, DING Xingcheng. Combined effect of chitosan and gamma ray on quality of chilled fresh pork.[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2016, 42(2): 220-227.
[13] ZHANG Min1,2, CHEN Yonggen3, YU Cuiping1, PAN Zhiqiang1, FAN Dongmei1, LUO Yaoping1, WANG Xiaochang1 *. Dynamic assessments of plant biomass and carbon storage during the production cycle of tea gardens[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2013, 39(6): 687-694.
[14] XU Chao1, SHEN Kai2, SHAO Luting2, DING Xingcheng1*. Regulatory function of irradiated chitosan to antioxidant enzymes and growth of Capsicum annuum L[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2013, 39(5): 497-503.
[15] WANG Anke, HE Qiuling, PAN Jingjing, SUN Yingchao, ZHU Shuijin, CHEN Jinhong*. Improved Agrobacteriummediated transformation protocol for VgDGAT1a  gene based on shoot tip culture of cotton[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2013, 39(3): 253-260.