Please wait a minute...
Journal of Zhejiang University (Agriculture and Life Sciences)  2020, Vol. 46 Issue (3): 271-279    DOI: 10.3785/j.issn.1008-9209.2019.06.281
Reviews     
Strategies for modulation and optimization of the photorespiration pathway in plants
Tianjiao ZHOU(),Xiaohui DING,Junhui WANG()
Institute of Genetics and Regenerative Biology, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
Download: HTML   HTML (   PDF(2290KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Plant ribulose-1, 5-bisphosphate carboxylase/oxidase (Rubisco) has two activities, and the one is carboxylation to assimilate CO2 to produce food for the biosphere, and the other one is oxidation to generate toxic 2-phosphoglycolate to commit the photorespiration pathway. For C3 plants, about 1/3 assimilation products of photosynthesis are used for photorespiration. However, knocking out photorespiration genes directly is unable to improve plant biomass, but also induces lethal phenotypes in most cases. Reasonable optimization of the photorespiration pathway has the potential of large improvements in plant biomass and crop productivity. Here, we review the function and gene loop of the photorespiration pathway, and discuss the approaches to engineer and optimize this pathway to increase crop yields.



Key wordsphotorespiration      C3 plant      ribulose-1, 5-bisphosphate carboxylase/oxidase (Rubisco)      glycerate transporter      glycolate transformation bypass     
Received: 28 June 2019      Published: 29 May 2020
CLC:  Q 945.1  
Corresponding Authors: Junhui WANG     E-mail: 937827838@qq.com;junhuiwang@zju.edu.cn
Cite this article:

Tianjiao ZHOU,Xiaohui DING,Junhui WANG. Strategies for modulation and optimization of the photorespiration pathway in plants. Journal of Zhejiang University (Agriculture and Life Sciences), 2020, 46(3): 271-279.

URL:

http://www.zjujournals.com/agr/10.3785/j.issn.1008-9209.2019.06.281     OR     http://www.zjujournals.com/agr/Y2020/V46/I3/271


植物光呼吸途径的调控和优化策略

植物的核酮糖-1,5-双磷酸羧化酶/加氧酶(ribulose-1, 5-bisphosphate carboxylase/oxidase, Rubisco)有2种活性:一是羧化作用,同化二氧化碳,为生物圈提供食物;二是氧化作用,消耗同化产物,生成有毒的2-磷酸乙醇酸,启动光呼吸途径。C3植物的光呼吸途径大约消耗了1/3的光合作用产物。但是,直接敲除光呼吸途径的基因不仅不能提高生物量,而且往往是致死的;只有科学优化光呼吸途径才能提高植物生物量和作物产量。本文综述了植物光呼吸途径的功能和基因通路,以及调控和优化光呼吸以提高植物生物量的方法和研究进展。


关键词: 光呼吸,  C3植物,  核酮糖-1,5-双磷酸羧化酶/加氧酶,  甘油酸转运体,  乙醇酸转化旁路 
Fig. 1 Photorespiration pathway of plantsRubisco: Ribulose-1, 5-bisphosphate carboxylase/oxidase; PGLP: 2-Phosphoglycolate phosphatase; BASS6: Bile acid sodium symporter; GOX: Glycolate oxidase; GGAT: Glutamate:glyoxylate aminotransferase; GDC: Glycine decarboxylase multienzyme system (composed of P, T, H and L proteins); SHMT: Serine hydroxymethyltransferase; NADH: Reduced nicotinamide adenine dinucleotide; SGAT: Serine:glyoxylate aminotransferase; HPR: Hydroxypyruvate reductase; PLGG1: Plastidic glycolate glycerate transporter; ptGLYK: Plastid-localized glycerate 3-kinase; cytGLYK: Cytoplasmic GLYK.
Fig. 2 Three approaches to optimizing photorespiration pathwayRubisco: Ribulose-1, 5-bisphosphate carboxylase/oxidase; BASS6: Bile acid sodium symporter; PLGG1: Plastidic glycolate glycerate transporter; NADH: Reduced nicotinamide adenine dinucleotide.
[1]   NISBET E G, GRASSINEAU N V, HOWE C J, et al. The age of Rubisco: the evolution of oxygenic photosynthesis. Geobiology, 2007,5(4):311-335. DOI:10.1111/j.1472-4669.2007.00127.x
doi: 10.1111/j.1472-4669.2007
[2]   OGREN W L, BOWES G. Ribulose diphosphate carboxylase regulates soybean photorespiration. Nature New Biology, 1971,230(13):159-160.
[3]   KELLY G J, LATZKO E. Inhibition of spinach leaf phosphofructokinase by 2-phosphoglycolate. FEBS Letters, 1976,68(1):55-58.
[4]   GONZáLEZ-MORO B, LACUESTA M, BECERRIL J M, et al. Glycolate accumulation causes a decrease of photosynthesis by inhibiting Rubisco activity in maize. Journal of Plant Physiology, 1997,150(4):388-394.
[5]   HAGEMANN M, FERNIE A R, ESPIE G S, et al. Evolution of the biochemistry of the photorespiratory C2 cycle. Plant Biology, 2013,15(4):639-647. DOI:10.1111/j.1438-8677.2012.00677.x
doi: 10.1111/j.1438-8677.2012
[6]   MALLMANN J, HECKMANN D, BRAUTIGAM A, et al. The role of photorespiration during the evolution of C4 photosynthesis in the genus Flaveria. Elife, 2014,3:e02478.DOI:10.7554/eLife.02478
doi: 10.7554/eLife.02478
[7]   SHARKEY T D. Estimating the rate of photorespiration in leaves. Physiologia Plantarum, 1988,73(1):147-152.
[8]   TCHERKEZ G. Is the recovery of (photo) respiratory CO2 and intermediates minimal? New Phytologist, 2013,198(2):334-338. DOI:10.1111/nph.12101
doi: 10.1111/nph.12101
[9]   SAGE R F, SAGE T L, KOCACINAR F. Photorespiration and the evolution of C4 photosynthesis.Annual Review of Plant Biology, 2012,63(1):19-47. DOI:10.1146/annurev-arplant-042811-105511
doi: 10.1146/annurev-arplant-042811-105511
[10]   EISENHUT M, PICK T R, BORDYCH C, et al. Towards closing the remaining gaps in photorespiration: the essential but unexplored role of transport proteins. Plant Biology, 2013,15(4):676-685. DOI:10.1111/j.1438-8677.2012.00690.x
doi: 10.1111/j.1438-8677.2012.00690.x
[11]   PICK T R, BRAUTIGAM A, SCHULZ M A, et al. PLGG1, a plastidic glycolate glycerate transporter, is required for photorespiration and defines a unique class of metabolite transporters. PNAS, 2013,110(8):3185-3190. DOI:10.1073/pnas.1215142110
doi: 10.1073/pnas.1215142110
[12]   SOUTH P F, WALKER B J, CAVANAGH A P, et al. Bile acid sodium symporter BASS6 can transport glycolate and is involved in photorespiratory metabolism in Arabidopsis thaliana. The Plant Cell, 2017,29(4):808-823. DOI:10.1105/tpc.16.00775
doi: 10.1105/tpc.16.00775
[13]   FOYER C H, BLOOM A J, QUEVAL G, et al. Photorespiratory metabolism: genes, mutants, energetics, and redox signaling. Annual Review of Plant Biology, 2009,60:455-484. DOI:10.1146/
annurev.arplant.043008.091948
doi: 10.1146/
[14]   YANG Y J, JIN H Y, CHEN Y, et al. A chloroplast envelope membrane protein containing a putative LrgB domain related to the control of bacterial death and lysis is required for chloroplast development in Arabidopsis thaliana. New Phytologist, 2012,193(1):81-95. DOI:10.1111/j.1469-8137.2011.03867.x
doi: 10.1111/j.1469-8137.2011
[15]   WANG J H, BAYLES K W. Programmed cell death in plants: lessons from bacteria? Trends in Plant Science, 2013,18(3):133-139. DOI:10.1016/j.tplants.2012.09.004
doi: 10.1016/j.tplants.2012.09.004
[16]   HOWITZ K T, MCCARTY R E. Substrate-specificity of the pea chloroplast glycolate transporter. Biochemistry, 1985,24(14):3645-3650.
[17]   HOWITZ K T, MCCARTY R E. D-glycerate transport by the pea chloroplast glycolate carrier: studies on [1-14C] D-glycerate uptake and D-glycerate dependent O2 evolution. Plant Physiology, 1986,80(2):390-395.
[18]   YAMAGUCHI M, TAKECHI K, MYOUGA F, et al. Loss of the plastid envelope protein AtLrgB causes spontaneous chlorotic cell death in Arabidopsis thaliana. Plant and Cell Physiology, 2012,53(1):125-134. DOI:10.1093/pcp/pcr180
doi: 10.1093/pcp/pcr180
[19]   SOMERVILLE C R, OGREN W L. A phosphoglycolate phosphatase-deficient mutant of Arabidopsis. Nature, 1979,280(5725):833-836.
[20]   WALKER B J, SOUTH P F, ORT D R. Physiological evidence for plasticity in glycolate/glycerate transport during photorespiration. Photosynthesis Research, 2016,129(1):93-103. DOI:10.1007/s11120-016-0277-3
doi: 10.1007/s11120-016-0277-3
[21]   LAXA M, FROMM S. Co-expression and regulation of photorespiratory genes in Arabidopsis thaliana: a bioinformatic approach. Current Plant Biology, 2018,14:2-18. DOI:10.1016/j.cpb.2018.09.001
doi: 10.1016/j.cpb.2018.09.001
[22]   USHIJIMA T, HANADA K, GOTOH E, et al. Light controls protein localization through phytochrome-mediated alternative promoter selection. Cell, 2017,171(6):1316-1325. DOI:10.1016/j.cell.2017.10.018
doi: 10.1016/j.cell.2017.10.018
[23]   WINGLER A, LEA P J, QUICK W P, et al. Photorespiration: metabolic pathways and their role in stress protection. Philosophical Transactions of the Royal Society of London Series B: Biological Sciences, 2000,355(1402):1517-1529. DOI:10.1098/rstb.2000.0712
doi: 10.1098/rstb.2000.0712
[24]   BAUWE H, HAGEMANN M, FERNIE A R. Photorespiration: players, partners and origin. Trends in Plant Science, 2010,15(6):330-336. DOI:10.1016/j.tplants.2010.03.006
doi: 10.1016/j.tplants.2010.03.006
[25]   TIMM S, MIELEWCZIK M, FLORIAN A, et al. High-to-low CO2 acclimation reveals plasticity of the photorespiratory pathway and indicates regulatory links to cellular metabolism of Arabidopsis. PLoS One, 2012,7(8):e42809. DOI:10.1371/journal.pone.0042809
doi: 10.1371/journal.pone.0042809
[26]   BLOOM A J. Photorespiration and nitrate assimilation: a major intersection between plant carbon and nitrogen. Photosynthesis Research, 2015,123(2):117-128. DOI:10.1007/s11120-014-0056-y
doi: 10.1007/s11120-014-0056-y
[27]   OBATA T, FLORIAN A, TIMM S, et al. On the metabolic interactions of (photo) respiration. Journal of Experimental Botany, 2016,67(10):3003-3014. DOI:10.1093/jxb/erw128
doi: 10.1093/jxb/erw128
[28]   HODGES M, DELLERO Y, KEECH O, et al. Perspectives for a better understanding of the metabolic integration of photorespiration within a complex plant primary metabolism network. Journal of Experimental Botany, 2016,67(10):3015-3026. DOI:10.1093/jxb/erw145
doi: 10.1093/jxb/erw145
[29]   SAMUILOV S, BRILHAUS D, RADEMACHER N, et al. The photorespiratory BOU gene mutation alters sulfur assimilation and its crosstalk with carbon and nitrogen metabolism in Arabidopsis thaliana. Frontiers in Plant Science, 2018,9:1709. DOI:10.3389/fpls.2018.01709
doi: 10.3389/fpls.2018.01709
[30]   SOUTH P F, CAVANAGH A P, LIU H W, et al. Synthetic glycolate metabolism pathways stimulate crop growth and productivity in the field. Science, 2019,363(6422):45. DOI:10.1126/science.aat9077
doi: 10.1126/science.aat9077
[31]   WALKER B J, VANLOOCKE A, BERNACCHI C J, et al. The costs of photorespiration to food production now and in the future. Annual Review of Plant Biology, 2016,67:107-129. DOI:10.1146/annurev-arplant-043015-111709
doi: 10.1146/annurev-arplant-043015-111709
[32]   PETERHANSEL C, NIESSEN M, KEBEISH R M. Metabolic engineering towards the enhancement of photosynthesis. Photochemistry and Photobiology, 2008,84(6):1317-1323. DOI:10.1111/j.1751-1097.2008.00427.x
doi: 10.1111/j.1751-1097.2008.00427.x
[33]   CARMO-SILVA E, SCALES J C, MADGWICK P J, et al. Optimizing Rubisco and its regulation for greater resource use efficiency. Plant, Cell and Environment, 2015,38(9):1817-1832. DOI:10.1111/pce.12425
doi: 10.1111/pce.12425
[34]   SOMERVILLE C R, OGREN W L. Genetic modification of photorespiration. Trends in Biochemical Sciences, 1982,7(5):171-174.
[35]   ZHU X G, PORTIS A R, LONG S P. Would transformation of C3 crop plants with foreign Rubisco increase productivity? A computational analysis extrapolating from kinetic properties to canopy photosynthesis. Plant, Cell and Environment, 2004,27(2):155-165.
[36]   MUELLER-CAJAR O, WHITNEY S M. Directing the evolution of Rubisco and Rubisco activase: first impressions of a new tool for photosynthesis research. Photosynthesis Research, 2008,98(1/2/3):667-675. DOI:10.1007/s11120-008-9324-z
doi: 10.1007/s11120-008-9324-z
[37]   BATHELLIER C, TCHERKEZ G, LORIMER G H, et al. Rubisco is not really so bad. Plant, Cell and Environment, 2018,41(4):705-716. DOI:10.1111/pce.13149
doi: 10.1111/pce.13149
[38]   TCHERKEZ G G B, FARQUHAR G D, ANDREWS T J. Despite slow catalysis and confused substrate specificity, all ribulose bisphosphate carboxylases may be nearly perfectly optimized. PNAS, 2006,103(19):7246-7251. DOI:10.1073/pnas.0600605103
doi: 10.1073/pnas.0600605103
[39]   SAVIR Y, NOOR E, MILO R, et al. Cross-species analysis traces adaptation of Rubisco toward optimality in a low-dimensional landscape. PNAS, 2010,107(8):3475-3480. DOI:10.1073/pnas.0911663107
doi: 10.1073/pnas.0911663107
[40]   YOUNG J N, HEUREUX A M C, SHARWOOD R E, et al. Large variation in the Rubisco kinetics of diatoms reveals diversity among their carbon-concentrating mechanisms. Journal of Experimental Botany, 2016,67(11):3445-3456. DOI:10.1093/jxb/erw163
doi: 10.1093/jxb/erw163
[41]   WHITNEY S M, ANDREWS T J. Plastome-encoded bacterial ribulose-1, 5-bisphosphate carboxylase/oxygenase (Rubisco) supports photosynthesis and growth in tobacco. PNAS, 2001,98(25):14738-14743. DOI:10.1073/pnas.261417298
doi: 10.1073/pnas.261417298
[42]   LIN M T, OCCHIALINI A, ANDRALOJC P J, et al. A faster Rubisco with potential to increase photosynthesis in crops. Nature, 2014,513(7519):547-550. DOI:10.1038/nature13776
doi: 10.1038/nature13776
[43]   OCCHIALINI A, LIN M T, ANDRALOJC P J, et al. Transgenic tobacco plants with improved cyanobacterial Rubisco expression but no extra assembly factors grow at near wild-type rates if provided with elevated CO2. The Plant Journal, 2016,85(1):148-160. DOI:10.1111/tpj.13098
doi: 10.1111/tpj.13098
[44]   ERB T J, ZARZYCKI J. Biochemical and synthetic biology approaches to improve photosynthetic CO2-fixation. Current Opinion in Chemical Biology, 2016,34:72-79. DOI:10.1016/j.cbpa.2016.06.026
doi: 10.1016/j.cbpa.2016.06.026
[45]   RAE B D, LONG B M, F?RSTER B, et al. Progress and challenges of engineering a biophysical CO2-concentrating mechanism into higher plants. Journal of Experimental Botany, 2017,68(14):3717-3737. DOI:10.1093/jxb/erx133
doi: 10.1093/jxb/erx133
[46]   KINNEY J N, AXEN S D, KERFELD C A. Comparative analysis of carboxysome shell proteins. Photosynthesis Research, 2011,109(1/2/3):21-32. DOI:10.1007/s11120-011-9624-6
doi: 10.1007/s11120-011-9624-6
[47]   SINETOVA M A, KUPRIYANOVA E V, MARKELOVA A G, et al. Identification and functional role of the carbonic anhydrase Cah3 in thylakoid membranes of pyrenoid of Chlamydomonas reinhardtii. Biochimica Et Biophysica Acta-Bioenergetics, 2012,1817(8):1248-1255. DOI:10.1016/j.bbabio.2012.02.014
doi: 10.1016/j.bbabio
[48]   NIEDERHUBER M J, LAMBERT T J, YAPP C, et al. Superresolution microscopy of the β-carboxysome reveals a homogeneous matrix. Molecular Biology of the Cell, 2017,28(20):2734-2745. DOI:10.1091/mbc.E17-01-0069
doi: 10.1091/mbc.E17-01-0069
[49]   SHARWOOD R E. A step forward to building an algal pyrenoid in higher plants. New Phytologist, 2017,214(2):496-499. DOI:10.1111/nph.14514
doi: 10.1111/nph.14514
[50]   SOMMER M, CAI F, MELNICKI M, et al. β-carboxysome bioinformatics: identification and evolution of new bacterial microcompartment protein gene classes and core locus constraints. Journal of Experimental Botany, 2017,68(14):3841-3855. DOI: 10.1093/jxb/erx115
doi: 10.1093/jxb/erx115
[51]   WOODGER F J, BADGER M R, PRICE G D. Sensing of inorganic carbon limitation in Synechococcus PCC7942 is correlated with the size of the internal inorganic carbon pool and involves oxygen. Plant Physiology, 2005,139(4):1959-1969. DOI:10.1104/pp.105.069146
doi: 10.1104/pp.105.069146
[52]   BADGER M R, PRICE G D. CO2 concentrating mechanisms in cyanobacteria: molecular components, their diversity and evolution. Journal of Experimental Botany, 2003,54(383):609-622. DOI:10.1093/jxb/erg076
doi: 10.1093/jxb/erg076
[53]   MCGRATH J M, LONG S P. Can the cyanobacterial carbon-concentrating mechanism increase photosynthesis in crop species? A theoretical analysis. Plant Physiology, 2014,164(4):2247-2261. DOI:10.1104/pp.113.232611
doi: 10.1104/pp.113.232611
[54]   LONG B M, RAE B D, ROLLAND V, et al. Cyanobacterial CO2-concentrating mechanism components: function and prospects for plant metabolic engineering. Current Opinion in Plant Biology, 2016,31:1-8. DOI:10.1016/j.pbi.2016.03.002
doi: 10.1016/j.pbi.2016.03.002
[55]   BONACCI W, TENG P K, AFONSO B, et al. Modularity of a carbon-fixing protein organelle. PNAS, 2012,109(2):478-483. DOI:10.1073/pnas.1108557109
doi: 10.1073/pnas.1108557109
[56]   LIN M T, OCCHIALINI A, ANDRALOJC P J, et al.β-carboxysomal proteins assemble into highly organized structures in Nicotiana chloroplasts. The Plant Journal, 2014,79(1):1-12. DOI:10.1111/tpj.12536
doi: 10.1111/tpj.12536
[57]   HANSON M R, LIN M T, CARMO-SILVA E, et al. Towards engineering carboxysomes into C3 plants. The Plant Journal, 2016,87(1):38-50. DOI:10.1111/tpj.13139
doi: 10.1111/tpj.13139
[58]   HAGEMANN M, BAUWE H. Photorespiration and the potential to improve photosynthesis. Current Opinion in Chemical Biology, 2016,35:109-116. DOI:10.1016/j.cbpa.2016.09.014
doi: 10.1016/j.cbpa.2016
[59]   TIMM S, FLORIAN A, ARRIVAULT S, et al. Glycine decarboxylase controls photosynthesis and plant growth. FEBS Letters, 2012,586(20):3692-3697. DOI:10.1016/j.febslet.2012.08.027
doi: 10.1016/j.febslet
[60]   TIMM S, WITTMI? M, GAMLIEN S, et al. Mitochondrial dihydrolipoyl dehydrogenase activity shapes photosynthesis and photorespiration of Arabidopsis thaliana. The Plant Cell, 2015,27(7):1968-1984. DOI:10.1105/tpc.15.00105
doi: 10.1105/tpc.15.00105
[61]   SIMKIN A J, LOPEZ-CALCAGNO P E, DAVEY P A, et al. Simultaneous stimulation of sedoheptulose 1, 7-bisphosphatase, fructose 1, 6-bisphophate aldolase and the photorespiratory glycine decarboxylase-H protein increases CO2 assimilation, vegetative biomass and seed yield in Arabidopsis. Plant Biotechnology Journal, 2017,15(7):805-816. DOI:10.1111/pbi.12676
doi: 10.1111/pbi
[62]   LóPEZ-CALCAGNO P E, FISK S, BROWN K L, et al. Overexpressing the H-protein of the glycine cleavage system increases biomass yield in glasshouse and field-grown transgenic tobacco plants. Plant Biotechnology Journal, 2019,17(1):141-151. DOI:10.1111/pbi.12953
doi: 10.1111/pbi.12953
[63]   TIMM S, GIESE J, ENGEL N, et al. T-protein is present in large excess over the other proteins of the glycine cleavage system in leaves of Arabidopsis. Planta, 2018,247(1):41-51. DOI:10.1007/s00425-017-2767-8
doi: 10.1007/s00425-017-2767-8
[64]   WU J X, ZHANG Z G, ZHANG Q, et al. The molecular cloning and clarification of a photorespiratory mutant, oscdm1, using enhancer trapping. Frontiers in Genetics, 2015,6:226.DOI:10.3389/fgene.2015.00226
doi: 10.3389/fgene.2015.00226
[65]   TIMM S, FLORIAN A, WITTMI? M, et al. Serine acts as a metabolic signal for the transcriptional control of photorespiration-related genes in Arabidopsis. Plant Physiology, 2013,162(1):379-389. DOI:10.1104/pp.113.215970
doi: 10.1104/pp.113.215970
[66]   MODDE K, TIMM S, FLORIAN A, et al. High serine:glyoxylate aminotransferase activity lowers leaf daytime serine levels, inducing the phosphoserine pathway in Arabidopsis. Journal of Experimental Botany, 2017,68(3):643-656. DOI:10.1093/jxb/erw467
doi: 10.1093/jxb/erw467
[67]   KEBEISH R, NIESSEN M, THIRUVEEDHI K, et al. Chloroplastic photorespiratory bypass increases photosynthesis and biomass production in Arabidopsis thaliana. Nature Biotechnology, 2007,25(5):593-599. DOI:10.1038/nbt1299
doi: 10.1038/nbt1299
[68]   N?LKE G, HOUDELET M, KREUZALER F, et al. The expression of a recombinant glycolate dehydrogenase polyprotein in potato (Solanum tuberosum) plastids strongly enhances photosynthesis and tuber yield. Plant Biotechnology Journal, 2014,12(6):734-742. DOI:10.1111/pbi.12178
doi: 10.1111/pbi.12178
[69]   DALAL J, LOPEZ H, VASANI N B, et al. A photo-respiratory bypass increases plant growth and seed yield in biofuel crop Camelina sativa. Biotechnology for Biofuels, 2015,8:175. DOI:10.1186/s13068-015-0357-1
doi: 10.1186/s13068-015-0357-1
[70]   CARVALHO J D C, MADGWICK P J, POWERS S J, et al. An engineered pathway for glyoxylate metabolism in tobacco plants aimed to avoid the release of ammonia in photorespiration. BMC Biotechnology, 2011,11:111. DOI: 10.1186/1472-6750-11-111
doi: 10.1186/
[71]   PETERHANSEL C, BLUME C, OFFERMANN S. Photo-respiratory bypasses: How can they work? Journal of Experi-mental Botany, 2013,64(3):709-715. DOI:10.1093/jxb/ers247
doi: 10.1093/jxb/ers247
[1] LI Bo, XU Wanyu, SHI Shanliang. Effects of polyethylene glycol stress on ion contents in nutritive organs of alfalfa seedlings[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2017, 43(1): 65-72.
[2] LIU Yu, WANG Fulin, LIU Renhu. Effects of yellow seed coat mutation on oil and protein contents in seeds of Brassica napus L.[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2017, 43(1): 37-44.
[3] . Variation in nitrogen uptake and utilization efficiency in spinach genotypes and its evaluation[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2012, 38(5): 599-607.
[4] . Plasticity responses of two sympodial bamboo species to nitrogen levels[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2012, 38(5): 608-613.
[5] LIU Jianfeng, CHENG Yunqing, LIU Qiang, WANG Zhanwu, YAN Kun. Leaf photosynthetic characteristics of Corylus heterophylla and hybrid hazel (Corylus heterophylla ×Corylus avellana)[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2012, 38(4): 413-420.