计算机技术 |
|
|
|
|
后验概率图与补白模型二次融合的关键词识别 |
陈太波( ),张翠芳*( ) |
西南交通大学 信息科学与技术学院,四川 成都 611756 |
|
Keyword recognition based on twice fusion of Posteriorgram and filler model |
Tai-bo CHEN( ),Cui-fang ZHANG*( ) |
School of Information Science and Technology, Southwest Jiaotong University, Chengdu 611756, China |
1 |
孙成立. 语音关键词识别技术的研究[D]. 北京: 北京邮电大学, 2008. SUN Cheng-li. A study of speech keyword recognition technology [D]. Beijing: Beijing University of Posts and Telecommunications, 2008.
|
2 |
侯靖勇, 谢磊, 杨鹏, 等 基于DTW的语音关键词检出[J]. 清华大学学报: 自然科学版, 2017, 57 (1): 18- 23 HOU Jing-yong, XlE Lei, YANG Peng, et al Spoken term detection based on DTW[J]. Journal of Tsinghua University: Science and Technology, 2017, 57 (1): 18- 23
|
3 |
汪鹏, 刘加, 刘润生 基于离散HMM的非特定人关键词提取语音识别系统[J]. 吉林大学学报: 理学版, 2003, 41 (3): 347- 351 WANG Peng, LIU Jia, LIU Run-sheng Discrete HMM based speaker independent keyword spotting speech recognition system[J]. Journal of Jilin University: Science Edition, 2003, 41 (3): 347- 351
|
4 |
TOSELLI A H, VIDAL E. Fast HMM-Filler approach for key word spotting in handwritten documents [C] // Proceedings of 2013 12th International Conference on IEEE. NewYork: IEEE, 2013: 341-358.
|
5 |
LIN C Y, HOVY E. Automatic evaluation of summaries using n-gram co-occurrence statistics [C] // Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology-volume. Association for Computational Linguistics, 2003.
|
6 |
孙彦楠, 夏秀渝 基于深度神经网络的关键词识别系统[J]. 计算机系统应用, 2018, 27 (5): 41- 48 SUN Yan-nan, XIA Xiu-yu Keyword recognition system based on deep neural network[J]. Computer Systems and Applications, 2018, 27 (5): 41- 48
|
7 |
GRAVES A, MOHAMED A, HINTON G. Speech recognition with deep recurrent neural networks [C] // 2013 IEEE International Conference on Acoustics, Speech and Signal Processing. Vancouver: IEEE, 2013: 6645-6649.
|
8 |
王满洪, 张二华, 王明合 基于双门限算法的端点检测改进研究[J]. 计算机与数字工程, 2017, 45 (11): 2223- 2228 WANG Man-hong, ZHANG Er-hua, WANG Ming-he Research and improvement on endpoint detection based on dual-threshold algorithm[J]. Computer and Digital Engineering, 2017, 45 (11): 2223- 2228
doi: 10.3969/j.issn.1672-9722.2017.11.030
|
9 |
邵明强, 徐志京 基于改进MFCC特征的语音识别算法[J]. 微型机与应用, 2017, 21 (1): 52- 54 SHAO Ming-qiang, XU Zhi-jing A speech recognition algorithm based on improved MFCC[J]. Microcomputer and Its Applications, 2017, 21 (1): 52- 54
|
10 |
SHAHNAWAZUDDIN S, SINHA R, PRADHAN G Pitch-normalized acoustic features for robust children ’s speech recognition[J]. IEEE Signal Processing Letters, 2017, 24 (8): 1128- 1132
doi: 10.1109/LSP.2017.2705085
|
11 |
花静. 基于HMM/SVM混合架构的连续语音识别模型的研究[D]. 哈尔滨: 哈尔滨工业大学, 2006. HUA Jing. Research on continuous speech recognition based on a hybrid HMM/SVM framework[D]. Harbin: Harbin Institute of Technology, 2006.
|
12 |
JIANG M, LIANG Y, FENG X, et al Text classification based on deep belief network and softmax regression[J]. Neural Computing and Applications, 2016, (7): 1- 10
|
13 |
NEYSHABUR B, SALAKHUTDINOV R R, SREBRO N. Path-SGD: path-normalized optimization in deep neural networks [C] // Advances in Neural Information Processing Systems 28. Montreal: [s.n.], 2015: 2422-2430.
|
14 |
陈洁群 基于Viterbi改进算法的汉语数码语音识别模型[J]. 微型机与应用, 2017, 36 (14): 11- 13 CHEN Jie-qun The research on improved Viterbi algorithm for Chinese digital speech recognition system[J]. Microcomputer and its Applications, 2017, 36 (14): 11- 13
|
15 |
GAUVAIN J L, LEE C H Maximum a posteriori estimation for multivariate gaussian mixture observations of Markov chains[J]. IEEE Transactions on Speech and Audio Processing, 1994, 2 (2): 291- 298
doi: 10.1109/89.279278
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|