Please wait a minute...
浙江大学学报(工学版)  2020, Vol. 54 Issue (6): 1177-1184    DOI: 10.3785/j.issn.1008-973X.2020.06.015
计算机技术     
SeqRec:基于长期偏好和即时兴趣的序列推荐模型
张岩(),郭斌*(),王倩茹,张靖,於志文
西北工业大学 计算机学院,陕西 西安 710072
SeqRec: sequential-based recommendation model with long-term preference and instant interest
Yan ZHANG(),Bin GUO*(),Qian-ru WANG,Jing ZHANG,Zhi-wen YU
School of Computer Science, Northwestern Polytechnical University, Xi’an 710072, China
 全文: PDF(767 KB)   HTML
摘要:

通过对用户的历史购物序列进行建模,得到用户稳定的长期偏好和动态的即时兴趣,并聚合长期偏好和即时兴趣进行个性化推荐. 提取用户对商品的评论内容用于表示商品的特征;使用递归神经网络从用户的历史购买序列数据中学习用户稳定的长期偏好,使用提问数据对用户不断变化的即时兴趣进行建模;通过注意力机制为长期偏好以及即时兴趣分配不同的权重,得到用户最终偏好的向量表示. 在亚马逊真实数据集上的实验结果表明,SeqRec模型在召回率和精确率上比当前主流的序列推荐方法至少超出10%;SeqRec模型证明不同用户的长期偏好和即时兴趣对其下次购买物品的影响程度不同.

关键词: 序列数据个性化推荐长期偏好即时兴趣注意力机制    
Abstract:

The user’s stable long-term preferences and dynamic instant interests were obtained by modeling on the user’s historical behavior records, and the user preferences were aggregated for personalized recommendation. Firstly, the users’ reviews on the items were extracted to represent the characteristics of the items. Secondly, users’ historical behavior records were used to represent their stable long-term preferences, and query data was used to model their instant interests. Third, the user’s final preferences were aggregated by assigning different weights to the long-term preferences and instant interests through the attention mechanism. Experiments on real data sets of Amazon were conducted to evaluate the performance of SeqRec model, and results show that it is superior to the current state-of-the-art sequential recommendation methods more than 10% in recall rate and percision ratio. Meanwhile, SeqRec model proves that the long-term preferences and instant interests of different users have different influences on their next purchases.

Key words: sequential data    personalized recommendation    long-term preferences    instant interests    attention mechanism
收稿日期: 2020-01-02 出版日期: 2020-07-06
CLC:  TU 111  
通讯作者: 郭斌     E-mail: 1065120019@qq.com;guob@nwpu.edu.cn
作者简介: 张岩(1996—),男,硕士生,从事推荐算法研究. orcid.org/0000-0003-0806-2006. E-mail: 1065120019@qq.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
张岩
郭斌
王倩茹
张靖
於志文

引用本文:

张岩,郭斌,王倩茹,张靖,於志文. SeqRec:基于长期偏好和即时兴趣的序列推荐模型[J]. 浙江大学学报(工学版), 2020, 54(6): 1177-1184.

Yan ZHANG,Bin GUO,Qian-ru WANG,Jing ZHANG,Zhi-wen YU. SeqRec: sequential-based recommendation model with long-term preference and instant interest. Journal of ZheJiang University (Engineering Science), 2020, 54(6): 1177-1184.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2020.06.015        http://www.zjujournals.com/eng/CN/Y2020/V54/I6/1177

图 1  基于长期偏好和即时兴趣的序列推荐(SeqRec)模型框架图
数据集 n m nbuy nrel
Electronics 196 114 65 124 19 445 4 881
Baby 17 217 4 982 1 321 213
表 1  电子产品和婴儿用品数据集统计信息
数据集 评价指标 R1 R5 R10 H1 H5 H10
Baby Caser 0.008 3(0.002 7) 0.022 5(0.003 0) 0.038 8(0.002 4) 0.015 0(0.005 0) 0.056 25(0.005 6) 0.110 0(0.003 1)
DREAM 0.003 0(0.001 0) 0.004 3(0.000 9) 0.033 7(0.004 4) 0.015 0(0.005 0) 0.031 30(0.004 0) 0.083 75(0.009 4)
SeqRec 0.006 3(0.001 8) 0.044 9(0.008 4) 0.056 9(0.009) 0.023 1(0.004 9) 0.080 0(0.010 4) 0.146 2(0.015 4)
提升幅度 ?24% 99% 47% 54% 42% 33%
Electronics Caser 0.001 3(0.000 5) 0.010 0(0.003 1) 0.025 0(0.005 1) 0.007 5(0.002 0) 0.040 8(0.001 2) 0.073 3(0.006 5)
DREAM 0.000 5(0.000 4) 0.011 5(0.001 5) 0.021 5(0.001 5) 0.005 0(0.002 0) 0.040 8(0.009 2) 0.076 6(0.011 2)
SeqRec 0.001 4(0.001 0) 0.019 7(0.007 0) 0.027 8(0.004 7) 0.010 0(0.003 1) 0.047 5(0.008 2) 0.090 0(0.013 5)
提升幅度 8% 71% 11% 33% 16% 17%
表 2  SeqRec模型与对比模型的召回率和命中率结果对比
图 2  不同用户对长期偏好和即时兴趣的权重
1 KARATZOGLOU A, BALTRUNAS L, SHI Y. Learning to rank for recommender systems [C] // Proceedings of the 7th ACM Conference on Recommender Systems. Hong Kong: ACM, 2013: 493-494.
2 KOREN Y, BELL R, VOLINSKY C Matrix factorization techniques for recommender systems[J]. Computer, 2009, (8): 30- 37
3 KOREN Y. Collaborative filtering with temporal dynamics [C] // Proceedings of the 15th ACM SIGKDD international Conference on Knowledge Discovery and Data Mining. Pairs: ACM, 2009: 447-456.
4 LIU Q, ZENG X Y, ZHU H S, et al. Mining indecisiveness in customer behaviors [C] // 2015 IEEE International Conference on Data Mining. Atlantic City: IEEE, 2015: 281-290.
5 ZHANG F Z, YUAN N J, Lian D F, et al. Collaborative knowledge base embedding for recommender systems [C] // Proceedings of the 22nd ACM SIGKDD international Conference on Knowledge Discovery and Data Mining. San Francisco: ACM, 2016: 353-362.
6 SHANG S, DING R G, ZHENG K, et al Personalized trajectory matching in spatial networks[J]. The VLDB Journal—The International Journal on Very Large Data Bases, 2014, 23 (3): 449- 468
doi: 10.1007/s00778-013-0331-0
7 YAP G E, LI X L, PHILIP S Y. Effective next-items recommendation via personalized sequential pattern mining [C] // International Conference on Database Systems for advanced applications. Berlin: Springer, 2012: 48-64.
8 GRBOVIC M, RADOSAVLJEVIC V, DJURIC N, et al. E-commerce in your inbox: product recommendations at scale [C] // Proceedings of the 21st ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Sydney: ACM, 2015: 1809-1818.
9 DONG D S, ZHENG X L, ZHANG R X, et al. Recurrent collaborative filtering for unifying general and sequential recommender [C] // International Joint Conferences on Artificial Intelligence. Stockholm: IJCAI, 2018: 3350–3356.
10 NIU S Z, ZHANG R Z. Collaborative sequence prediction for sequential recommender [C] // Proceedings of the 2017 ACM on Conference on Information and Knowledge Management. Singapore: ACM, 2017: 2239-2242.
11 YU F, LIU Q, WU S, et al. A dynamic recurrent model for next basket recommendation [C] // Proceedings of the 39th International ACM SIGIR Conference on Research and Development in Information Retrieval. Pisa: ACM, 2016: 729-732.
12 ZHANG Y Y, DAI H J, XU C, et al. Sequential click prediction for sponsored search with recurrent neural networks [C] // Twenty-Eighth AAAI Conference on Artificial Intelligence. Québec: AAAI, 2014.
13 RICCI F, ROKACH L, SHAPIRA B, et al. Introduction to recommender systems handbook [M]. Boston: Springer, 2011: 1-35.
14 MNIH A, SALAKHUTDINOV R R. Probabilistic matrix factorization [C] // In Advances in Neural Information Processing Systems. Vancouver: NIPS, 2008, 1257–1264.
15 BELL R M, KOREN Y. Scalable collaborative filtering with jointly derived neighborhood interpolation weights [C] // Seventh IEEE International Conference on Data Mining. Omaha: IEEE, 2007: 43-52.
16 WANG J, TANG Q. A probabilistic view of neighborhood-based recommendation methods [C] // 2016 IEEE 16th International Conference on Data Mining Workshops. Barcelona: IEEE, 2016: 14-20.
17 ZHAO H K, LIU Q, GE Y, et al. Group preference aggregation: a nash equilibrium approach [C] // 2016 IEEE 16th International Conference on Data Mining. Barcelona: IEEE, 2016: 679-688.
18 TANG J X, WANG K. Personalized top-n sequential recommendation via convolutional sequence embedding [C] // Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining. Los Angeles: ACM, 2018: 565-573.
19 HE X N, LIAO L Z, ZHANG H W, et al. Neural collaborative filtering [C] // Proceedings of the 26th International Conference on World Wide Web. Switzerland: ACM, 2017: 173-182.
20 RENDLE S, FREUDENTHALER C, SCHMDITHIEME L. Factorizing personalized Markov chains for next-basket recommendation [C] // In Proceedings of the 19th international conference on World Wide Web. Raleigh: ACM, 811–820.
21 WANG P F, GUO J F, LAN Y Y, et al. Learning hierarchical representation model for next basket recommendation [C] // Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2015: 403-412.
22 HIDASI B, KARATZOGLOU A, BALTRUNAS L, et al. Session-based recommendations with recurrent neural networks[J]. arXiv preprint, arXiv: 1511.06939, 2015.
23 LI J, REN P J, CHEN Z M, et al. Neural attentive session-based recommendation [C] // Proceedings of the 2017 ACM on Conference on Information and Knowledge Management. Singapore: ACM, 2017: 1419-1428.
24 DONKERS T, LOEPP B, ZIEGLER J. Sequential user-based recurrent neural network recommendations [C] // Proceedings of the Eleventh ACM Conference on Recommender Systems. Como: ACM, 2017: 152-160.
25 SCHUSTER M, PALIWAL K K Bidirectional recurrent neural networks[J]. IEEE Transactions on Signal Processing, 1997, 45 (11): 2673- 2681
doi: 10.1109/78.650093
26 HOCHREITER S, SCHMIDHUBER J Long short-term memory[J]. Neural Computation, 1997, 9 (8): 1735- 1780
[1] 雍子叶,郭继昌,李重仪. 融入注意力机制的弱监督水下图像增强算法[J]. 浙江大学学报(工学版), 2021, 55(3): 555-562.
[2] 潘晓,杨云丹,尧鑫,吴雷,王书海. 基于隐马尔科夫模型的潜在个性化路线推荐[J]. 浙江大学学报(工学版), 2020, 54(9): 1736-1745.
[3] 刘创,梁军. 基于注意力机制的车辆运动轨迹预测[J]. 浙江大学学报(工学版), 2020, 54(6): 1156-1163.
[4] 赵小虎,尹良飞,赵成龙. 基于全局?局部特征和自适应注意力机制的图像语义描述算法[J]. 浙江大学学报(工学版), 2020, 54(1): 126-134.
[5] 董月,冯华君,徐之海,陈跃庭,李奇. Attention Res-Unet: 一种高效阴影检测算法[J]. 浙江大学学报(工学版), 2019, 53(2): 373-381.
[6] 郭宝震, 左万利, 王英. 采用词向量注意力机制的双路卷积神经网络句子分类模型[J]. 浙江大学学报(工学版), 2018, 52(9): 1729-1737.