Please wait a minute...
浙江大学学报(工学版)  2020, Vol. 54 Issue (2): 357-364    DOI: 10.3785/j.issn.1008-973X.2020.02.017
机械与能源工程     
基于体素的汽车装配体漏水缝隙识别与可视化
扶建辉1(),王进1,*(),陆国栋1,JUNGYoong-ho2
1. 浙江大学 机械工程学院 流体动力与机电系统国家重点实验室,浙江 杭州 310027
2. 釜山大学 机械工程学院,韩国 釜山 46241
Voxel-based recognition and visualization of water leakage gaps for automobile assembly
Jian-hui FU1(),Jin WANG1,*(),Guo-dong LU1,Yoong-ho JUNG2
1. State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
2. School of Mechanical Engineering, Pusan National University, Busan 46241, S. Korea
 全文: PDF(1554 KB)   HTML
摘要:

为了在新车型设计阶段发现漏水问题,提出基于体素的汽车装配体潜在漏水缝隙的识别与可视化方法. 在汽车装配体模型体素化的基础上,通过定义相邻零件之间的缝隙体素,重构三角网格曲面并提取零件的边界边,以确定表达漏水部位的边界体素;基于所提出的映射点生成算法计算缝隙间距并构建缝隙曲面;通过由弦高误差控制的自适应细分方法降低缝隙曲面边界到零件曲面的误差,利用彩色云图进行可视化显示. 该方法能够精确识别汽车的全部潜在漏水部位,并可以直观显示漏水部位的缝隙大小,以快速验证水密性设计的合理性,避免出现先天设计缺陷而造成声誉与经济损失. 该方法还可以应用于航空航天、造船、化工等行业的大型复杂产品设计.

关键词: 汽车漏水装配体三角网格体素缝隙可视化    
Abstract:

A voxel-based method of recognizing and visualizing the potential water leakage gaps of automobile assembly was proposed for finding the water leakage problem during the new car model design phase. Based on the voxelization of the automobile assembly, the boundary voxels representing the position of water leakage were determined by defining the gap voxels among neighboring parts, reconstructing triangular meshed surfaces and extracting the boundary edges of parts. The gap distances were calculated and the gap surfaces were constructed based on the presented algorithm of mapping points generation. The errors from the boundary edges of gap surfaces to part surfaces were reduced by the self-adaptive subdivision method controlled by the chordal height error, and the gap surfaces were visualized by the color map. The method can be used to precisely identify all the potential positions of water leakage and visually display the gap sizes, which provides a possibility for quickly verifying the reasonability of water tightness design, and thus avoiding the reputational and financial losses caused by the emergence of congenital design defects. The method can also be applied to the design of large-scale and complex products in other industries such as aircraft, ship and chemical engineering.

Key words: automobile    water leakage    assembly    triangular mesh    voxel    gap    visualization
收稿日期: 2019-06-12 出版日期: 2020-03-10
CLC:  U 462.1  
基金资助: 国家重点研发计划资助项目(2017YFB1301203);中国博士后科学基金资助项目(2018M630670);浙江大学机器人研究院资助项目(K11809)
通讯作者: 王进     E-mail: jhf@zju.edu.cn;dwjcom@zju.edu.cn
作者简介: 扶建辉(1985—),男,博士后,从事CAD/CAE/CAM研究. orcid.org/0000-0002-4594-2451. E-mail: jhf@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
扶建辉
王进
陆国栋
JUNGYoong-ho

引用本文:

扶建辉,王进,陆国栋,JUNGYoong-ho. 基于体素的汽车装配体漏水缝隙识别与可视化[J]. 浙江大学学报(工学版), 2020, 54(2): 357-364.

Jian-hui FU,Jin WANG,Guo-dong LU,Yoong-ho JUNG. Voxel-based recognition and visualization of water leakage gaps for automobile assembly. Journal of ZheJiang University (Engineering Science), 2020, 54(2): 357-364.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2020.02.017        http://www.zjujournals.com/eng/CN/Y2020/V54/I2/357

图 1  装配体缝隙识别与可视化算法概述
图 2  缝隙曲面构建过程
图 3  缝隙曲面构建流程图
图 4  与缝隙体素相交的三角形类型
图 5  三角网格曲面重构
图 6  最短点、链接点和反射点的定义
图 7  映射点生成算法示意图
图 8  映射点生成算法流程图
图 9  缝隙曲面误差示意图
图 10  缝隙曲面细分过程示意图
图 11  汽车潜在漏水部位识别
图 12  缝隙曲面生成与可视化
图 13  优化前、后的缝隙曲面对比
1 董红磊, 王琰, 肖凌云, 等 汽车产品缺陷认定方法及分级选择流程研究[J]. 标准科学, 2019, (4): 48- 54
DONG Hong-lei, WANG Yan, XIAO Ling-yun, et al Study on defect identification methods and choose process of automotive product[J]. Standard Science, 2019, (4): 48- 54
doi: 10.3969/j.issn.1674-5698.2019.04.009
2 ZUO W, LU Y, ZHAO X, et al Cross-sectional shape design of automobile structure considering rigidity and driver's field of view[J]. Advances in Engineering Software, 2018, 115: 161- 167
doi: 10.1016/j.advengsoft.2017.09.006
3 HERRMANN C, DEWULF W, HAUSCHILD M, et al Life cycle engineering of lightweight structures[J]. CIRP Annals, 2018, 67 (2): 651- 672
doi: 10.1016/j.cirp.2018.05.008
4 LI Z, XU Z, SHU P Analysis and solution of flooding water problem for EV passenger compartment[J]. Automation, Control and Intelligent Systems, 2018, 6 (2): 20- 27
doi: 10.11648/j.acis.20180602.11
5 TAKAHASHI H, RURI N, NOBUTOSHI K. Development of evaluation system for automobile corrosion environment [C]// JJAP Conference Proceedings. Japan: The Japan Society of Applied Physics, 2016: 011402.
6 HOU B, LI X, MA X, et al The cost of corrosion in China[J]. NPJ Materials Degradation, 2017, 1 (1): 4
doi: 10.1038/s41529-017-0005-2
7 KALUZA A, KLEEMANN S, FR?HLICH T, et al Concurrent design and life cycle engineering in automotive lightweight component development[J]. Procedia Cirp, 2017, 66: 16- 21
doi: 10.1016/j.procir.2017.03.293
8 RAMNATH B V, ELANCHEZHIAN C, NAVEEN E, et al Implementation of concurrent redesign and manufacture procedure for an automotive component[J]. Materials Today: Proceedings, 2018, 5 (1): 1418- 1424
doi: 10.1016/j.matpr.2017.11.228
9 REZAPOUR S, HASSANI A, FARAHANI R Z Concurrent design of product family and supply chain network considering quality and price[J]. Transportation Research Part E: Logistics and Transportation Review, 2015, 81: 18- 35
doi: 10.1016/j.tre.2015.05.013
10 SHI J, LIU J, NING R, et al A collisions evaluation method in virtual environment for collaborative assembly[J]. Journal of Network and Computer Applications, 2013, 36 (6): 1523- 1530
doi: 10.1016/j.jnca.2013.01.003
11 DAMRATH F, STRAHILOV A, B?R T, et al Experimental validation of a physics-based simulation approach for pneumatic components for production systems in the automotive industry[J]. Procedia CIRP, 2015, 31: 35- 40
doi: 10.1016/j.procir.2015.03.078
12 BOUCHARD P O, LAURENT T, TOLLIER L Numerical modeling of self-pierce riveting: from riveting process modeling down to structural analysis[J]. Journal of Materials Processing Technology, 2008, 202 (1?3): 290- 300
doi: 10.1016/j.jmatprotec.2007.08.077
13 PASCARELLI C, LAZOI M, PAPADIA G, et al. CAD-VR integration as a tool for industrial assembly processes validation: a practical application [C]// International Conference on Augmented Reality, Virtual Reality and Computer Graphics. Cham: Springer, 2018: 435-450.
14 SONG I H, CHUNG S C Synthesis of the digital mock-up system for heterogeneous CAD assembly[J]. Computers in Industry, 2009, 60 (5): 285- 295
doi: 10.1016/j.compind.2008.09.004
15 COHEN Y A technique for integrated modelling of manual and automatic assembly[J]. Journal of Manufacturing Technology Management, 2015, 26 (2): 164- 181
doi: 10.1108/JMTM-11-2013-0157
16 COHRS M, KLIMKE S, ZACHMANN G Streamlining function-oriented development by consistent integration of automotive function architectures with CAD Models[J]. Computer-Aided Design and Applications, 2014, 11 (4): 399- 410
doi: 10.1080/16864360.2014.881182
17 GEWOHN M, BEYERER J, USL?NDER T, et al Smart information visualization for first-time quality within the automobile production assembly line[J]. IFAC-Papers On Line, 2018, 51 (11): 423- 428
doi: 10.1016/j.ifacol.2018.08.333
18 国家技术监督局.客车防雨密封性试验方法: GB/T 12480—2009 [S]. 北京: 中国标准出版社, 1990: 9.
19 YUN J, LEE S, JUNG Y Development of a gap searching program for automotive body assemblies based on a decomposition model representation[J]. Advances in Engineering Software, 2015, 81: 7- 16
doi: 10.1016/j.advengsoft.2014.10.003
20 YUN J, LEE S, FU J, et al Development of a backflow simulation program for automotive body assemblies[J]. International Journal of Automotive Technology, 2017, 18 (4): 613- 624
doi: 10.1007/s12239-017-0061-1
21 FU J, AN B, PARK R, et al. Visualization of gaps between sheet parts for watertightness of automobiles [M]. Information Science and Applications (ICISA) 2016. Singapore: Springer, 2016: 1127-1132.
22 LEE K. Principles of CAD/CAM/CAE systems [M]. East Rutherford: Prentice Hall PTR, 1999.
23 SCHWARZ M, SEIDEL H P Fast parallel surface and solid voxelization on GPUs[J]. ACM Transactions on Graphics, 2010, 29 (6): 179
[1] 周爱民,刘宏斌,张书涛,欧阳晋焱. 面向汽车主客观审美评价的不确定性推理模型[J]. 浙江大学学报(工学版), 2021, 55(3): 419-429.
[2] 于梦婷,汪怡平,苏楚奇,陶琦,史建鹏. 尾随半挂车队列行进的轿车燃油经济性研究[J]. 浙江大学学报(工学版), 2021, 55(3): 455-461.
[3] 白大鹏,张斌,洪昊岑,李洋,季清华,杨华勇. 生物3D打印装置及打印模型形貌检测[J]. 浙江大学学报(工学版), 2021, 55(2): 289-298.
[4] 李静,王晨,张家旭. 基于自适应快速终端滑模的车轮滑移率跟踪控制[J]. 浙江大学学报(工学版), 2021, 55(1): 169-176.
[5] 赵伟国,路佳佳,赵富荣. 基于缝隙射流原理的离心泵空化控制研究[J]. 浙江大学学报(工学版), 2020, 54(9): 1785-1794.
[6] 尚夏,王美佳,许刘晓,章立辉. 城市区域电动汽车充电设施配置优化[J]. 浙江大学学报(工学版), 2020, 54(6): 1210-1217.
[7] 黄钰期,陈卓烈,胡军强,李梅,牛昊一. 活塞内冷油腔两相流振荡可视化模拟[J]. 浙江大学学报(工学版), 2020, 54(3): 435-441.
[8] 余煇,柴登峰. 基于长方形点过程的遥感图像汽车提取[J]. 浙江大学学报(工学版), 2019, 53(9): 1741-1748.
[9] 任思源,郭斌,张曼,岳超刚,李青洋,於志文. 寄递大数据城市画像[J]. 浙江大学学报(工学版), 2019, 53(9): 1779-1787.
[10] 王郭俊,许洪国,刘宏飞. 双半挂汽车列车操纵稳定性分析[J]. 浙江大学学报(工学版), 2019, 53(2): 299-306.
[11] 张曼, 施树明. 面向汽车运行工况设计的马氏链非等长交叉进化算法[J]. 浙江大学学报(工学版), 2018, 52(9): 1658-1666.
[12] 葛晓波, 谢靓, 杨东武, 张树新, 杨癸庚. 大型构架式索网反射面天线机电集成设计[J]. 浙江大学学报(工学版), 2018, 52(4): 775-780.
[13] 周炳海, 彭涛. 基于混合教-学算法的汽车装配线物料供应调度[J]. 浙江大学学报(工学版), 2018, 52(10): 1854-1863.
[14] 潘宁, 于良耀, 张雷, 宋健, 张永辉. 电液复合制动系统防抱控制的舒适性[J]. 浙江大学学报(工学版), 2017, 51(1): 9-16.
[15] 叶丽雅,汪震,文福拴,杨俊,江道灼. V2G代理商调频服务经济效益评估[J]. 浙江大学学报(工学版), 2016, 50(9): 1831-1840.