Please wait a minute...
浙江大学学报(工学版)  2020, Vol. 54 Issue (2): 398-406    DOI: 10.3785/j.issn.1008-973X.2020.02.022
航空航天技术     
气动软体自折叠机械臂的驱动和负载性能
徐彦(),方琴,张超,李鸿巍
浙江大学 航空航天学院,浙江 杭州 310027
Driving and load performances of pneumatic soft self-folding manipulators
Yan XU(),Qin FANG,Chao ZHANG,Hong-wei LI
School of Aeronautics and Astronautics, Zhejiang University, Hangzhou 310027, China
 全文: PDF(1926 KB)   HTML
摘要:

提出由气动自折叠机械臂和气动关节构成的全软体空间捕获机器人方案. 基于折纸理论设计气动自折叠机械臂结构初始构型,研究气动自折叠机械臂的驱动特性和负载性能;进行气动机械臂的充气驱动试验,得到气压-伸长量关系曲线;基于非线性有限元法,分析气动机械臂驱动过程的大变形和应力应变分布. 结果表明,充气段和排气段的曲线均呈非线性变化,整个驱动过程的滞回曲线明显,验证了其充气驱动-排气自折叠的驱动特性. 通过负载能力试验和仿真分析,评估气动机械臂的负载能力. 随着设计气压不断变大,拉伸负载能力变小,滞回环变大,而抗压负载能力变大,滞回环变小. 所研究的气动自折叠机械臂为实现全软体空间捕获机器人提供技术支撑.

关键词: 气动软体机械臂自折叠折纸驱动特性负载能力    
Abstract:

A space soft capture robot composed of pneumatic self-folding manipulators and pneumatic joints was presented. The initial structural configuration of the pneumatic self-folding manipulators was designed based on the origami theory. The driving mechanism and load performance of the pneumatic self-folding manipulators were investigated. The inflated drive tests of the pneumatic manipulators were conducted and the pressure-elongation curves were obtained. The large deformations and stress/strain distributions of the manipulators were analyzed based on the nonlinear finite element method. Results show that the curves of both the inflated stage and the exhaust stage are nonlinear, and the hysteresis curves are obvious in the whole driving process. Thus, the driving mechanisms of inflated expansion and exhaust self-folding can be verified. The load performances of the pneumatic manipulators were evaluated by load performance test and simulation analysis. As the design pressure increases, the tensile load capacity decreases and the area of hysteresis cycle increases, while the compressive load capacity increases and the area of hysteresis cycle decreases. The pneumatic self-folding manipulators provide technical supports for the realization of space soft capture robots.

Key words: pneumatic soft manipulator    self-folding    origami    driving mechanism    load performance
收稿日期: 2019-08-19 出版日期: 2020-03-10
CLC:  TP 242  
基金资助: 国家自然科学基金资助项目(91748209,11402229);中央高校基本科研业务费资助项目(2018QNA4054)
作者简介: 徐彦(1982—),男,副教授,从事航天器结构机构、空间机器人研究. orcid.org/0000-0003-4718-1681. E-mail: xyzs@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
徐彦
方琴
张超
李鸿巍

引用本文:

徐彦,方琴,张超,李鸿巍. 气动软体自折叠机械臂的驱动和负载性能[J]. 浙江大学学报(工学版), 2020, 54(2): 398-406.

Yan XU,Qin FANG,Chao ZHANG,Hong-wei LI. Driving and load performances of pneumatic soft self-folding manipulators. Journal of ZheJiang University (Engineering Science), 2020, 54(2): 398-406.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2020.02.022        http://www.zjujournals.com/eng/CN/Y2020/V54/I2/398

图 1  软体空间捕获机器人示意图
图 2  气动自折叠机械臂示意图
图 3  气动波纹管结构
图 4  气动关节模型
图 5  机械臂采用的hexagonal折纸样式
图 6  气动机械臂结构的初始结构构型
图 7  气动机械臂结构基本单元间的几何关系
图 8  气动机械臂实体模型
图 9  气动机械臂实物图
图 10  硅橡胶材料参数测试试验件
图 11  应力-伸长比试验与拟合结果对比
图 12  充气驱动测试装置示意图
图 13  气动机械臂的气压-伸长量试验曲线
图 14  气动机械臂分析模型
图 15  气动机械臂的气压-伸长量曲线对比
图 16  气动机械臂的结构变形和应力应变分布
序号 p/Pa Δ/mm
1 0 80(拉伸)
2 482 80(拉伸)
3 964 80(拉伸)
4 482 40(压缩)
5 964 40(压缩)
表 1  气动机械臂负载能力试验工况
图 17  气动机械臂的轴向拉伸/压缩试验
图 18  气动机械臂在不同气压下的载荷-位移曲线
图 19  不同工况下载荷位移仿真结果与试验结果的比较
1 RICCARDO B, MICHELE L, SAMUELE S Multibody dynamics driving GNC and system design in tethered nets for active debris removal[J]. Advances in Space Research, 2016, 58: 45- 63
doi: 10.1016/j.asr.2016.04.015
2 REINTSEMA D, THAETER J, RATHKE A, et al. Deos-the German robotics approach to secure and de-orbit malfunctioned satellites from low earth orbite [C]// Proceeding of the i-SAIRAS. Sapporo: JAXA, 2010: 244-251.
3 REED J, BUSQUETS J, WHITE C. Grappling system for capturing heavy space debris [C]// 2nd European Workshop on Active Debris Removal. Paris: Centre National d’Etudes Spatiales, 2012.
4 JANI J M, LEARY M, SUBIC A, et al A review of shape memory alloy research, applications and opportunities[J]. Materials and Design, 2014, 56: 1078- 1113
doi: 10.1016/j.matdes.2013.11.084
5 HAINES C S, LIMA M D, LI N, et al Artificial muscles from fishing line and sewing thread[J]. Science, 2014, 343: 868- 872
doi: 10.1126/science.1246906
6 SHAHINPOOR M, BAR-COHEN Y, SIMPSON J, et al Ionic polymer-metal composites (IPMCS) as biomimetic sensors, actuators and artificial muscles-a review[J]. Smart Mater Structures, 1998, 7: 15- 30
doi: 10.1088/0964-1726/7/6/001
7 DUDUTA M, WOOD R J, CLARKE D R Multilayer dielectric elastomers for fast, programmable actuation without prestretch[J]. Advanced Materials, 2016, 28: 8058- 8063
doi: 10.1002/adma.201601842
8 PALLEAU E, MORALES D, DICKEY M D, et al Reversible patterning and actuation of hydrogels by electrically assisted ionoprinting[J]. Nature Communications, 2013, 4: 22571- 22577
9 IONOV L Hydrogel-based actuators: possibilities and limitations[J]. Materials Today, 2014, 17: 494- 503
doi: 10.1016/j.mattod.2014.07.002
10 MIRIYEV A, STACK K, LIPSON H Soft material for soft actuators[J]. Nature Communications, 2017, 8: 5961- 5968
11 SANAN S, LYNN P S, GRIFFITH S T Pneumatic torsional actuators for inflatable robots[J]. Journal of Mechanisms and Robotics, 2014, 6: 031003
doi: 10.1115/1.4026629
12 YANG D, VERMA M S, SO J H, et al Buckling pneumatic linear actuators inspired by muscle[J]. Advance Materials Technologies, 2016, 1: 1600055
doi: 10.1002/admt.201600055
13 EDWIN A P, DARREN J H, RICHARD J M J Origami-inspired active structures: a synthesis and review[J]. Smart Materials and Structures, 2014, 23 (9): 094001
doi: 10.1088/0964-1726/23/9/094001
14 JESSE L S, ARTHUR A E, LAUREN M, et al Using origami design principles to fold reprogrammable mechanical metamaterials[J]. Science, 2014, 345 (6197): 647
doi: 10.1126/science.1252876
15 HONG Y, YAO W, XU Y, et al Research on the folding patterns and deployment dynamics of inflatable capsule structures[J]. Journal of Aerospace Technology and Management, 2018, 10 (1): 1- 12
16 徐彦, 关富玲 可展开薄膜结构折叠方式和展开过程研究[J]. 工程力学, 2008, 25 (5): 176- 181
XU Yan, GUAN Fu-lin Fold methods and deployment analysis of deployable membrane structure[J]. Engineering Mechanics, 2008, 25 (5): 176- 181
17 SCHENK M, VIQUERAT A D, SEFFEN K A, et al Review of inflatable booms for deployable space structures: packing and rigidization[J]. Journal of Spacecraft and Rockets, 2014, 51 (3): 762- 778
doi: 10.2514/1.A32598
18 CHEN Y, FENG J Folding of a type of deployable origami structures[J]. International Journal of Structural Stability and Dynamics, 2012, 12 (6): 1250054
doi: 10.1142/S021945541250054X
19 CHEN Y, FENG J, SUN Q Lower-order symmetric mechanism modes and bifurcation behavior of deployable bar structures with cyclic symmetry[J]. International Journal of Solids and Structures, 2018, 139/140: 1- 14
doi: 10.1016/j.ijsolstr.2017.05.008
20 CHEN Y, SAREH P, YAN J, et al An integrated geometric-graph-theoretic approach to representing origami structures and their corresponding truss frameworks[J]. Journal of Mechanical Design: Transactions of the ASME, 2019, 141 (9): 091402
doi: 10.1115/1.4042791
21 CHEN Z, LIANG X, WU T, et al Pneumatically actuated soft robotic arm for adaptable grasping[J]. Acta Mechanica Solida Sinica, 2018, 31 (5): 608- 622
doi: 10.1007/s10338-018-0052-4
22 YASUTAKA N, MEGUMI U, HISAE T, et al Development of a pneumatic soft actuator with pleated inflatable structures[J]. Advanced Robotics, 2017, 31 (14): 753- 762
doi: 10.1080/01691864.2017.1345323
[1] 张铁,胡亮亮,邹焱飚. 基于混合遗传算法的机器人改进摩擦模型辨识[J]. 浙江大学学报(工学版), 2021, 55(5): 801-809.
[2] 陈原,郭登辉,田丽霞. 绳牵引刚柔式波浪补偿并联机构的设计与建模[J]. 浙江大学学报(工学版), 2021, 55(5): 810-822.
[3] 高新智,刘作军,张燕,陈玲玲. 基于GWO-SVM的下肢假肢穿戴者骑行相位识别[J]. 浙江大学学报(工学版), 2021, 55(4): 648-657.
[4] 杨灿军,彭桢哲,徐铃辉,杨巍. 柔性膝关节保护外骨骼及其行走助力方法设计[J]. 浙江大学学报(工学版), 2021, 55(2): 213-221.
[5] 刘明敏,曲道奎,徐方,邹风山,贾凯,宋吉来. 基于运动发散分量的四足机器人步态规划[J]. 浙江大学学报(工学版), 2021, 55(2): 244-250.
[6] 马鑫,梁新武,蔡纪源. 基于点线特征的快速视觉SLAM方法[J]. 浙江大学学报(工学版), 2021, 55(2): 402-409.
[7] 赵燕伟,张健,周仙明,吴耿育. 基于视觉-磁引导的无人机动态跟踪与精准着陆[J]. 浙江大学学报(工学版), 2021, 55(1): 96-108.
[8] 董大钊,徐冠华,高继良,徐月同,傅建中. 基于机器视觉的机器人装配位姿在线校正算法[J]. 浙江大学学报(工学版), 2021, 55(1): 145-152.
[9] 郭英杰,顾钒,董辉跃,汪海晋. 压脚压紧力作用下的机器人变形预测和补偿[J]. 浙江大学学报(工学版), 2020, 54(8): 1457-1465.
[10] 张峻宁,苏群星,刘鹏远,王正军,谷宏强. 基于空间约束的自适应单目3D物体检测算法[J]. 浙江大学学报(工学版), 2020, 54(6): 1138-1146.
[11] 张燕,王建宙,李威,王婕,陈玲玲,杨鹏. 基于数据驱动的膝关节外骨骼控制[J]. 浙江大学学报(工学版), 2019, 53(10): 2024-2033.
[12] 丁加涛,何杰,李林芷,肖晓晖. 基于模型预测控制的仿人机器人实时步态优化[J]. 浙江大学学报(工学版), 2019, 53(10): 1843-1851.
[13] 张铁,肖蒙,邹焱飚,肖佳栋. 基于强化学习的机器人曲面恒力跟踪研究[J]. 浙江大学学报(工学版), 2019, 53(10): 1865-1873.
[14] 李兴东,高赫蔚,孙龙. 面向深度相机位姿优化的帧间点云数据配准算法[J]. 浙江大学学报(工学版), 2019, 53(9): 1749-1758.
[15] 陈英龙,闫迪,张增猛,宁大勇,弓永军. 基于水压直驱的软体单元的动静态特性[J]. 浙江大学学报(工学版), 2019, 53(8): 1602-1609.